首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
微生物诱导碳酸钙沉淀(MICP)技术在土体改良方面具有良好的应用前景,同时兼顾了生态环境效益。为了对MICP固砂过程进行实时监测,提出将高密度电阻率层析成像技术(ERT)与MICP相结合的方法,通过开展相应的室内试验,验证方法的可行性。试验过程中,将石英砂填入高度60 mm、直径176 mm的圆柱模具,并在四周设计了16个电极,采用喷洒工艺在砂土表面限定区域进行了三轮MICP处理,利用自主研发的ERT系统对不同处理阶段的试样进行了电阻率测试,对比分析了MICP处理过程中试样内部电性参数的空间变化规律。结果表明:(1)MICP处理过程中,处理区域呈现低电阻率特征,低电阻区的范围与电阻率大小主要与菌液和胶结液在砂土介质中的入渗扩散过程有关。(2)对MICP固化砂样进行洗盐风干后,之前处理区域由低电阻区转变为高电阻区,主要是因为微生物诱导生成的碳酸钙胶结作用导致砂土介质的密实度增大。(3)利用ERT技术可以有效追踪MICP处理过程中砂土内部电阻异常区的形成与扩展,并与MICP固砂过程与固化效果建立联系,说明采用ERT技术监测MICP固砂过程具有可行性,为研究MICP固砂机制和评价固化效果提供了新的技术思路。  相似文献   

2.
压实度是填方工程质量验收的主要控制项目之一,较高压实度对改善黄土力学性能效果显著。为全面系统分析压实对黄土抗剪特性的影响规律,更好地揭示较高压实度提高黄土抗剪能力的内在原因,利用室内三轴剪切试验和电镜扫描试验,基于 4 种不同压实度,对甘肃省临夏市北塬地区压实黄土的抗剪特性和细观结构进行了研究。研究表明:压实黄土应力—应变满足双曲线形式,较高压实度对提高黄土体抗剪强度和剪切模量作用显著;较高压实度通过改变土体颗粒之间的接触形式以改善黄土体抗剪特性,主要表现为压实黄土颗粒之间的接触形式随着压实度的增加由棱边接触、支架镶嵌向面接触逐渐过渡;较高压实度通过改变土体孔隙尺度特征和形态分布以改善土体抗剪特性,主要表现为随着压实度的增加孔隙分布范围内微、小孔隙的含量增加,中、大、特大孔隙含量减小,孔隙形状也相对变得圆滑。  相似文献   

3.
微生物诱导碳酸钙沉淀(MICP)作为一种环保型地基处理技术,其机理是通过微生物诱导碳酸钙沉淀有效改善土体工程性能,参与固化反应的营养液成份不同对固化效果有显著影响。分别选用氯化钙和硝酸钙作为营养液中的钙源,通过渗透实验、干密度实验、吸水率实验、无侧限抗压强度实验从宏观角度分析钙源对微生物固化砂土物理力学指标的影响。同时,结合电镜扫描测试,从微观角度对比了不同钙源作用下碳酸钙沉淀晶体形态及空间分布的差异。研究结果表明:利用硝酸钙固化后的砂柱整体密实度更高,其破坏裂缝在饱水和干燥状态下比氯化钙固化后的砂柱更小;硝酸钙作为钙源固化后的砂柱渗透系数和吸水率更低,干密度和无侧限抗压强度也更高。电镜扫描结果显示,氯化钙为钙源形成的碳酸钙沉淀量较少,形态为球状,散落分布在砂粒表面;硝酸钙形成碳酸钙沉淀量较多,形态以球状或者立方体为主,包裹住砂颗粒,团聚效果更为明显。因此,就钙源而言,硝酸钙的微生物固化效果较氯化钙更好。  相似文献   

4.
分析了研究人员对于胶结液中尿素对MICP影响的不同认识之间存在的分歧,利用水溶液试验及一维砂柱加固试验,对比研究了胶结液中尿素过量(双倍浓度)对MICP的影响。在水溶液和砂柱中,进行了三种氯化钙浓度(0.25 M,0.5 M,1.0 M)条件下尿素过量与否的对比试验。测试对比了水溶液试验过程中NH4+,Ca2+变化规律、砂柱试验中Ca2+消耗,CaCO3生成情况和砂柱无侧限强度等。研究结果表明:(1)水溶液试验中,过量的尿素在反应初期不利于尿素水解与碳酸钙沉积; (2)在砂柱试验中,过量的尿素也对MICP不利,加固后土体强度较低,加固效果较差; (3)砂柱试验中这一现象与注浆方式(间隔12 h直灌式注浆)和较短的胶结液停留时间有关; (4)在水溶液和砂柱两种环境下,低氯化钙浓度(0.25 M)情况下尿素过量对MICP的影响都最为明显。  相似文献   

5.
生物地基处理技术利用微生物诱导碳酸钙沉积来加固土体,符合环境保护和可持续发展的要求,具有良好的发展前景。目前已取得的研究成果主要是针对简单离子化学环境下的松散砂土,对不同环境下的细粒土研究的较少。以江苏东部沿海地区的海相吹填粉土为研究对象,选用巴氏芽孢杆菌进行微生物注浆试验,定量分析温度、pH值、氯化盐含量、土体中胶结阳离子含量等土中的环境因素对加固效果的影响规律。结果表明:随着温度的升高、试样中生成的碳酸钙增加,但无侧限抗压强度并不是呈现出一直提高的趋势,而是存在一个峰值。偏碱性的环境有利于巴氏芽孢杆菌的工作,但过高的pH值会影响加固效果。土中的氯化盐含量过高时会抑制细菌的活性从而对加固产生不利影响。土中的胶结阳离子含量对微生物注浆的影响很小,可忽略不计。本次试验研究结果能为现场环境下采用MICP技术加固粉土提供有效的依据。  相似文献   

6.
目前对于微生物诱导碳酸盐沉淀技术(MICP)土体加固技术的研究大多数集中在宏观力学性能上,对微观力学特性的研究较少。为了探究页岩土 MICP 结石体的微观力学特性,在不同峰值荷载下对页岩土 MICP 结石体进行纳米压痕测试,并基于能量法中弹性参数计算模型及塑性断裂力学理论计算页岩土 MICP 结石体中胶结体区域及土颗粒区域的硬度、弹性模量和断裂韧度。结合激光显微镜及 X 射线衍射试验,探讨测点处碳酸钙胶结体状态及矿物组分对页岩土 MICP 结石体各相材料微观力学特性的影响,建立页岩土 MICP 结石体弹性模量、硬度及断裂韧度三者之间的线性关系。结果表明,利用纳米压痕技术测试页岩土 MICP 结石体材料的弹性模量、硬度及断裂韧度具备可行性。由于 MICP 技术诱导生成的方解石晶体质地不均匀,导致页岩土 MICP 结石体中胶结体的弹性模量、硬度及断裂韧度存在较大离散性。矿物组分中石英矿物的存在能够强化页岩土颗粒的微观力学特性,使部分页岩土颗粒的力学参数提高。各区域的断裂韧度变化趋势与弹性模量、硬度相同,三者之间具有简单线性关系。 纳米压痕技术打破了常规力学试验对试样尺寸的限制,为测定页岩土 MICP 结石体的细观力学参数提供借鉴。  相似文献   

7.
泥石流坝后侵蚀坑纵剖面形态及最大深度实验研究   总被引:3,自引:0,他引:3  
泥石流拦砂坝坝后侵蚀坑形态和深度是泥石流冲刷基础研究的薄弱环节。通过室内水槽实验,探讨了泥石流坝后侵蚀坑的形态和不同实验控制条件下侵蚀坑深度的变化规律等。由实验观察可知,侵蚀坑纵剖面整体上呈现两端浅中间深的形态特征,其最深点的位置随水槽坡度增大向下游方向发展;侵蚀坑坑内上游坡度较下游坡度陡,对于具有相同级配的粘性砂和无粘性砂,无粘性砂的侵蚀坑坑内坡度较粘性砂的缓;侵蚀坑的最大深度受沟床纵坡、泥石流的容重、沟床组成物质的性质(特征粒径、粘性)等因素的影响较大;泥砂粘性的存在将大大削弱侵蚀的深度。  相似文献   

8.
汶川地震次生泥石流形成模式与机理   总被引:2,自引:0,他引:2  
以汶川地震灾区的典型的代表性泥石流案例为基础,分析了汶川地震次生泥石流的形成地形地貌、降水和土源条件特征,概括分析了汶川地震泥石流形成的5种模式,即:(1)沟床启动型;(2)坡面崩滑转化型;(3)震裂表土侵蚀启动型;(4)滑坡表面土体液化型和(5)松散坡积物冲切沟启动型。分析了这些形成模式的启动机理。地震次生泥石流的形成机理包括土力类和水力类。泥石流的形成需要一定的细颗粒含量,尤其是粘土颗粒含量;此外低密度干燥度较高的土体在降雨作用下易湿陷,体积收缩,从而有利于土体孔隙水压力的升高,而有利土体强度的降低,导致泥石流的启动。所以地震灾区的泥石流集中分布于干旱河谷松散固体物质大量存在且以花岗岩风化壳和碎屑岩及其变质岩为主的地区,降雨量特征与国内外众多泥石流的降雨特征可以比较,其模式多样。  相似文献   

9.
2019 年 9 月 14 日,甘肃省定西市通渭县发生大型黄土滑坡。通过对该黄土滑坡的现场调查和无人机航测,查明了孕育滑坡的地形地貌、水文地质等条件,对滑坡体的形态特征、结构特征和运动模式进行深入研究,揭示了常家河滑坡的致灾机理。运用高密度电法对滑坡体进行探测,探明滑坡区域的地层结构、滑体厚度、地下水分布及空间展布情况。结合有限元法和严格的极限平衡法计算坡体的稳定性,得到降雨条件下滑坡坡体的最大剪应变区域分布及斜坡稳定性随着降雨持时的变化规律。研究结果表明:(1)通渭滑坡整体形态呈圈椅状,分为 3 个典型破坏区域,形成大量垂直陡坎,黄土滑动厚度约为 8~50 m;(2)通渭滑坡属“牵引?推移”式顺层滑坡,运动方式为“坡脚失稳牵引?中部受阻滑移?后部失稳推移”;(3)地下水多为裂隙岩溶水,地层结构不明显,早期地震等地质构造活动对地层形状影响较大;(4)黄土斜坡稳定性受降雨持时影响持续降低,斜坡最大剪应变区域多分布于斜坡中上部, 且从泥岩接触面向坡面发展;(5)降雨是触发通渭滑坡的最直接因素,冲沟发育、河流侵蚀与农业生产活动是重要的孕灾条件。  相似文献   

10.
植物源脲酶诱导碳酸钙沉积(EICP)的固化技术因其环境友好且经济高效,能够在荒漠风积沙表面形成固化层,起到防风固沙作用,逐渐被应用于土地荒漠化和沙化治理。然而,碳酸钙在土体表面的快速沉积,产生孔喉效应,使碳酸钙积淀在土体表面,造成固化深度浅、固化效果不均匀。为此,使用脲酶抑制剂延缓尿素水解,实现对碳酸钙沉淀生成速率的调控,进而优化土体表面固化效果,提高其防风固沙能力。结果表明,NBPT 的添加能有效延缓尿素水解速率,降低初期碳酸钙的生成速率,但不影响碳酸钙最终生成量。NBPT 的抑制效果与浓度、混合时间关系密切,浓度越高,混合时间越短,其抑制效果就越好。与未处理试样相比,无论是否添加 NBPT,经 EICP 处理的试样抗风蚀性均明显提高。向 EICP 溶液中添加 NBPT 能有效改善土体固化层表面强度、厚度和碳酸钙分布,浓度为 0.1 g/L 固化效果最佳。SEM 和 XRD 试验结果显示,添加 NBPT 后,碳酸钙晶体形貌多为球状和针簇状,而这种针簇状晶体之间的相互交织与嵌套可提高 EICP 固化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号