首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性   总被引:1,自引:0,他引:1  
以桉木为原料,使用高锰酸钾对桉木生物炭(BC)进行改性,制备改性生物炭(KBC).对其进行表征,并进行了水溶液中Pb (Ⅱ)的静态吸附实验,探究了溶液pH、吸附剂投加量、吸附时间、温度和初始浓度对Pb (Ⅱ)的吸附效果影响.结果表明,最佳吸附反应pH为5,吸附在6 h达到饱和,当温度为25℃,Pb (Ⅱ)的初始浓度为100mg ·L-1,吸附剂投加量为0.06 g时,KBC对Pb (Ⅱ)的最大吸附量为83.059mg ·g-1,去除率为99.67%.KBC对Pb (Ⅱ)的吸附遵循二级动力学模型和Langmuir等温吸附模型,其是发生在均匀表面的单层吸附.采用BET、SEM-EDS、XRD、FT-IR和XPS对吸附剂进行表征分析,发现吸附机制主要是KBC含氧和KBC含锰基团通过络合作用和沉淀作用来吸附Pb (Ⅱ),以及在吸附过程中生物炭表面会形成—O—Pb—O—双齿配合物.因此,高锰酸钾改性BC可以作为一种很好的Pb (Ⅱ)吸附剂.  相似文献   

2.
改性西瓜皮生物炭的制备及其对Pb (Ⅱ)的吸附特性   总被引:6,自引:5,他引:1  
以西瓜皮为原料,使用硫化铵[(NH42S]对其改性制备生物炭(MBC),用于对Pb (Ⅱ)进行吸附.探究了溶液pH、吸附时间、吸附剂添加量、Pb (Ⅱ)初始质量浓度和离子强度等因素对Pb (Ⅱ)吸附效果的影响.结果表明,饱和吸附时间为5 h,吸附反应的最佳pH为6,当Pb (Ⅱ)初始质量浓度1000 mg·L-1,吸附剂添加量为2.0 g·L-1时,MBC对Pb (Ⅱ)的最大吸附量可达97.63 mg·g-1,明显高于未改性西瓜皮生物炭(BC)对Pb (Ⅱ)的吸附量.改性西瓜皮生物炭对Pb (Ⅱ)的吸附符合Langmuir等温吸附模型和拟二级动力学模型,证明吸附以单分子层化学吸附为主.使用氢氧化钠溶液对吸附Pb (Ⅱ)之后的MBC进行解吸来研究MBC的可重复使用性,在第六次循环中吸附量仍达64.74 mg·g-1.采用傅立叶转换红外光谱(FT-IR)、X射线光电子能谱(XPS)、氮吸附(BET)、扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)和Zeta电位对吸附剂进行表征分析,发现吸附机制主要是MBC含氧和MBC含硫基团通过络合作用和沉淀作用来吸附Pb (Ⅱ).因此,硫化铵改性西瓜皮生物炭可以作为一种高效的Pb (Ⅱ)吸附剂.  相似文献   

3.
为解决水体中重金属Cu2+污染,本研究首先采用水热法制备得到超顺磁四氧化三铁纳米粒子,然后使用对Cu2+具有强络合作用的含有丰富氨基官能团的支化聚乙烯亚胺接枝到纳米粒子表面,得到Fe3O4@BPEI磁性纳米吸附剂。采用红外光谱(FTIR)、X射线粉末衍射(XRD)、透射电子显微镜(TEM)等对其结构、尺寸及形貌进行表征。研究了不同吸附因素对吸附剂吸附Cu2+的影响,确定了最佳吸附条件,并通过吸附动力学模型和吸附等温线模型进一步探讨吸附机理。结果表明:支化聚乙烯亚胺成功接枝到四氧化三铁纳米粒子表面。最佳吸附条件为pH=6.0、吸附平衡时间为40 min、吸附剂用量为10 mg。通过实验数据拟合,Fe3O4@PEI吸附Cu2+的过程符合Langmuir等温吸附方程和拟二级动力学模型,表明吸附过程为化学吸附控制的单分子层覆盖,在303 K时,模型理论饱和吸附量为141.24 mg/g。表明支化聚乙烯亚胺修饰的磁性纳米吸附剂对Cu2+具有较强的吸附能力,对水体中Cu2+的去除具有一定的应用前景。  相似文献   

4.
通过酰胺化一锅法成功制备了三乙烯四胺修饰的磁性氧化石墨烯纳米颗粒(MGO-TETA)吸附剂,并利用傅里叶红外光谱仪(FT-IR)、 拉曼光谱仪(Raman)、扫描电子显微镜(SEM)证实了MGO-TETA吸附剂的成功制备.同时,实验研究了吸附剂用量、亚甲基蓝溶液(MB)的pH值、吸附剂的零电点和离子强度对MGO-TETA吸附性能的影响,并考察了MGO-TETA的循环再生和工业模拟应用.最后,通过拟一级动力学、拟二级动力学、颗粒内扩散和液膜扩散4种模型讨论了吸附动力学过程,使用Langmuir、Freundlich 和Temkin模型探讨了吸附热力学行为. 结果表明:MGO-TETA对MB的吸附是自发可行且吸热的,符合Langmuir等温线模型和拟二级动力学模型.由Langmuir等温线模型计算的最大吸附量为638.90 mg·g-1.经过5次吸附-解吸循环以后,MB的去除率仍然可达87%.经过实验证明在吸附过程中MGO-TETA吸附剂与MB之间存在静电相互作用、氢键相互作用、π-π共轭相互作用.  相似文献   

5.
地聚合物(Geopolymer,简称GP)是一种具有三维立体网状结构的无机聚合物,对重金属有良好的吸附性能.以火山灰掺杂木质纤维素为原料制备了木质纤维素/火山灰基地聚合物,考察了投加量、pH、时间、温度和初始离子浓度等因素对掺杂木质纤维素前后的GP吸附Pb(II)的影响,通过对比说明掺杂对吸附性能的提升作用.结果表明,在55 ℃,pH=5、投加量为0.6 g·L-1、Pb(II)初始浓度为400 mg·L-1时,掺杂木质纤维素得到的GP(简称L-GP)对Pb(II)最大吸附量可达460.83 mg·g-1,远优于仅用火山灰所得的GP的223.21 mg·g-1.两种GP对Pb(II)的吸附均很好地符合二级动力学规律和Langmuir方程,且反应过程都是熵增吸热的过程.通过XRD等分析表明,木质纤维素掺杂火山灰作为原料而制备所得的复合材料保留了GP的结构特点,而且能够利用木质纤维素上丰富的官能团从而提升GP的吸附量,是一种优良高效的吸附剂.本文对利用火山灰和木质纤维素制备高性能GP及其潜在应用具有重要指导意义.  相似文献   

6.
以壳聚糖为原材料,通过原位共沉淀法和柠檬酸钠交联法制备了一种新型多孔磁性壳聚糖凝胶微球吸附剂CS-citrate/Fe3O4.利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱(FTIR)、热重分析(TG)对吸附剂进行了表征.结果表明,吸附剂内部具有发达的孔隙结构,并均匀分布有平均直径为(4.79±1.09)nm的Fe3O4纳米颗粒;吸附剂中引入Fe3O4后,仍存在羟基、氨基和羧基等功能基团,且吸附剂磁性良好可用于磁场分离;吸附剂对Pb(Ⅱ)的吸附等温线和动力学研究表明,吸附过程以化学吸附为主,最大吸附容量可达178.25mg/g.  相似文献   

7.
为获得价格低廉、吸附性能优良的石墨烯基吸附剂,以氧化石墨烯(GO)、羧甲基纤维素(CMC)为基材,以聚乙烯亚胺(PEI)为改性试剂,通过化学修饰的方法制备了氨基修饰氧化石墨烯-羧甲基纤维素复合吸附剂(GO-PEI-CMC).采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)及X射线光电子能谱(XPS)等表征手段证实了CMC、氧化石墨烯与PEI已成功复合.静态吸附实验表明GO-PEI-CMC对Cr (VI)表现出良好的吸附性能,由Langmuir等温吸附模型所得最大吸附量值为243.92 mg·g-1.吸附动力学、吸附等温线研究表明GO-PEI-CMC对Cr (VI)的吸附为单分子层、化学吸附过程.GO-PEI-CMC对Cr (VI)吸附性能优良,且具有绿色环保、可生物降解的优点,是一种极具潜力的Cr (VI)吸附剂.  相似文献   

8.
陈瑞环  刘云  张澜  田坤  董元华 《环境科学学报》2020,40(12):4297-4305
为开发高效染料吸附剂,以丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,N,N''-亚甲基双丙烯酰胺为交联剂-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为偶联剂合成了一种新型有机聚合物(KAA),并以红外光谱(FTIR)与扫描电镜(SEM)对其进行表征.选用典型阳离子染料亚甲基蓝(MB)为研究对象,研究KAA对MB的吸附动力学、吸附热力学以及溶液pH值和不同阳离子对吸附的影响.结果表明,实验浓度范围内KAA对亚甲基蓝的最大吸附量为1558 mg·g-1,能够在1.5 h内达到吸附平衡,吸附动力学符合准一级动力学模型,吸附等温线符合通用等温模型(a general model),吸附热力学数据表明吸附过程为自发、放热的熵减过程.KAA对亚甲基蓝的吸附具有较宽的pH适用范围,吸附剂具有良好的pH缓冲能力,阳离子对吸附具有较强的抑制作用,抑制作用大小为Al3+ > Ca2+ > Na+.研究表明吸附的主要驱动力为静电作用和π-π相互作用.与其他吸附剂相比,KAA对亚甲基蓝具有超高的吸附量以及酸碱耐受能力,更符合实际应用需求.  相似文献   

9.
纳米Fe3O4负载的浮游球衣菌去除重金属离子的工艺研究   总被引:3,自引:2,他引:1  
以纳米Fe3O4负载浮游球衣菌(Sphaerotilus natans)制备复合生物吸附剂,对此吸附剂进行表征并考察了其吸附水中重金属离子的性能.红外光谱分析表明,此复合生物吸附剂表面的主要活性基团为酰胺基(—CONH—)和羟基(—OH).吸附性能研究表明,菌含量和流量是影响复合生物吸附剂吸附重金属离子的主要因素,在Cu2+初始浓度c0<20 mg/L,菌含量1.5 g/L(菌/ Fe3O4=3∶2),流量0.96 L/h 时吸附剂对Cu2+的吸附效果最好;用稀盐酸对复合生物吸附剂进行再生,吸附剂可重复使用10次以上,再生液可重复使用3次; 吸附选择性为:Pb2+ > Cu2+ > Zn2+>Cd2+.  相似文献   

10.
以废弃油茶壳为原料,采用磷酸活化和铁盐共沉积进行改性制备得到磁性含磷生物炭(MPBC).通过扫描电镜(SEM)、X射线衍射(XRD)、比表面积和孔径分析(BET)、傅立叶红外光谱(FT-IR)和X射线光电子能谱(XPS)等技术对材料进行表征分析,MPBC孔隙多、比表面积高(1 139.28 m2·g-1)、表面官能团丰富,且能够在外加磁场的作用下快速实现固液分离.探究了其对水体中磺胺甲唑(SMX)的吸附行为和影响因素,该吸附剂在酸性和中性环境中对SMX表现出优异的吸附性能,而碱性条件和CO32-的存在对吸附具有明显的抑制作用.其吸附过程符合准二级动力学和Langmuir模型,其吸附速率快,最大吸附容量可达356.49 mg·g-1.吸附机制主要是SMX分子和 MPBC的焦磷酸盐表面官能团(C—O—P键)发生的化学吸附作用,此外还包括氢键作用、π—π电子供体-受体(π—π EDA)作用和孔隙填充效应.MPBC吸附剂的开发为废弃油茶壳的资源化利用和磺胺甲唑废水处理提供一条有效途径.  相似文献   

11.
采用响应曲面法优化了KOH改性污泥生物炭(SB-KOH)的制备条件,研究了各因素之间对生物炭吸附性能的交互影响,并且探讨了KOH强化生物炭吸附能力的机制.同时,研究了吸附时间、吸附温度及pH对SB-KOH吸附Pb(Ⅱ)的影响,探讨其吸附机理.结果表明:KOH浸渍浓度是最显著因素,较高浸渍浓度有利于提高SB-KOH的吸附性能;增加KOH浸渍浓度和升高热解温度可以协同提高SB-KOH的吸附性能;最佳制备条件为2.5 mol·L-1的KOH浸渍浓度、7 h的浸渍时间、631 ℃的热解温度和44 min的热解时间.KOH改性后的污泥生物炭表面粗糙, 比表面积增大,微孔数量增加,SB-KOH的比表面积为141.22 m2·g-1,是原污泥生物炭(SB,5.93 m2·g-1)的24倍,改性后的生物炭碱性提高、K元素含量增加.SB-KOH吸附Pb(Ⅱ)是以化学吸附为主的多分子层混合吸附,膜扩散是主要的速率控制步骤,增加溶液pH、提高温度可促进吸附.吸附机制涉及矿物沉淀(Qmp)、离子交换(Qie)、含氧官能团的络合(Qoc)和金属π键结合(Q),不同吸附机理的贡献顺序为:Qmp(143.5 mg·g-1)>Qie(39.67 mg·g-1)>Qoc(8.56 mg·g-1)>Q(1.65 mg·g-1),KOH改性强化了生物炭对Pb(Ⅱ)的矿物沉淀和离子交换吸附量.本研究丰富了KOH改性污泥生物炭的制备理论,阐明了SB-KOH吸附Pb(Ⅱ)吸附机理及其影响的主要机制.  相似文献   

12.
改性生物吸附剂具有更好的重金属离子去除能力,成为近年来研究热点.本研究通过向菌株拉乌尔菌Raoultella sp. X13生长培养基中添加特定盐获得改性吸附剂,并研究了其镉离子(Cd2+)吸附特性.研究结果表明,相比原始菌体X13,经KCl、K2SO4、KH2PO4、(NH42SO4和NH4Cl改进的生长培养基制备的吸附剂提高了对Cd2+吸附效果.其中,NH4Cl改性的拉乌尔菌Raoultella sp. X13(命名为R5-1)对Cd2+吸附能力显著增加,达66.40 mg·g-1,增加了47.30%.这一显著变化主要依赖于生长代谢引起的细胞表面结构变化.Cd2+吸附特性研究结果表明生物吸附过程受溶液pH、初始金属浓度和接触时间的影响.Langmuir等温线模型和伪二级动力学模型更加符合吸附剂R5-l对Cd2+的吸附数据. FTIR分析表明R5-l表面存在多种功能位点并可能参与金属离子的结合,例如—OH,—CH2,N—H, —COO,磷酸盐或硫酸盐等官能团.模拟实验结果表明吸附剂R5-l可以有效修复废水中多种金属离子.因此,本研究获得的改性吸附剂R5-l可以作为重金属Cd2+的潜在微生物修复剂,并为高效,简便,环保地制备改性吸附剂提供一定的参考.  相似文献   

13.
周莉  童裳伦 《环境科学学报》2021,41(10):3993-4002
为开发高效抗生素吸附剂,将钨酸铜通过静电作用负载到碘氧化铋晶体表面,制备了新型多金属氧酸盐复合材料(BiOI/CuWO4),并以扫描电镜、傅里叶红外光谱与X射线能谱等对其进行表征.选用环丙沙星(CIP)、恩诺沙星(ENR)、诺氟沙星(NOR)、氧氟沙星(OFL)这4种典型氟喹诺酮类抗生素(FQs)作为研究对象,在建立同时测定这4种FQs的高效液相色谱分析方法基础上,研究了BiOI/CuWO4对FQS的吸附性能及溶液pH值和吸附剂量等对吸附的影响.结果表明,实验浓度范围内BiOI/CuWO4对NOR、CIP、ENR和OFL的最大吸附量分别为277.8、149.3、113.6和112.4 mg·g-1,且能够在3 h内达到吸附平衡,吸附动力学符合准二级吸附动力学模型,对CIP、ENR和OFL的吸附等温线基本复合Langmuir模型,而对NOR的吸附则更加符合Freundlich模型.与其它吸附剂相比,BiOI/CuWO4对4种典型FQs具有较高的吸附量及较好的重复利用性,更符合实际应用需求.  相似文献   

14.
卢予沈  宗莉  于惠  牟斌  王爱勤 《环境科学》2021,42(11):5450-5459
由金属离子及其类似物可控合成的层状双金属氢氧化物具有丰富的层间离子和表面官能团,因而在吸附方面得到了广泛研究,但吸附-脱附应用方式会对环境造成二次污染.将吸附刚果红的层状双金属氢氧化物通过煅烧碳化制备混合金属氧化物/碳复合材料,详细研究了对水溶液中重金属离子Pb (Ⅱ)的吸附性能.结果表明,混合金属氧化物/碳复合材料对Pb (Ⅱ)具有较快的吸附速率和较高的吸附容量.30 min内吸附量即可达到150 mg ·g-1以上,同时,其吸附量随层状双金属氢氧化物中引入Mg2+含量的增加而增加,最大达到368 mg ·g-1.混合金属氧化物/碳复合材料对Pb (Ⅱ)的去除机制主要是表面诱导生成难溶物Pb3(CO32(OH)2.研究结果为混合金属氧化物/碳复合材料对含铅土壤的修复奠定了应用基础.  相似文献   

15.
为获得同时具有优良的吸附性能和磁分离特性的生物吸附材料,以汽爆秸秆为基质,采用戊二醛交联剂法制备了磁性聚乙烯亚胺功能化秸秆吸附剂(Fe3O4-PEI-RS),通过SEM、XRD、FTIR、XPS和VSM等手段表征了材料的结构和性质,测定了Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附性能,考察了pH、吸附时间、吸附剂投加量、Pb(Ⅱ)初始浓度、温度等因素对吸附的影响.结果表明,Fe3O4-PEI-RS对Pb(Ⅱ)的吸附具有强烈的pH依赖性;吸附时间对Pb(Ⅱ)的吸附效率有明显的影响,在180 min时吸附达到平衡,吸附过程符合准二级动力学模型;Langmuir和Freundlich模型都能很好地描述Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附行为,20、30和40℃时最大吸附量分别为192.31、200.00和212.77 mg/g;热力学参数△G < 0,而焓变△H>0、△S>0,说明该吸附属于熵增加的自发吸热反应过程,升温有利于吸附.重复试验表明,EDTA作解吸剂,经5次吸附/解吸附循环后吸附剂仍能保持较高的吸附容量.研究显示,所制Fe3O4-PEI-RS对Pb(Ⅱ)具有较高的吸附容量,稳定性好、可循环利用,能在磁场下实现快速分离.   相似文献   

16.
Pb(II)会随工业的应用而残留在各类水体中,对人类和水生态构成潜在风险.以好氧颗粒污泥(Aerobic Granular Sludge, AGS)为接种污泥,在序批式反应器中研究Pb(II)对AGS的生物毒性及其迁移转化特性,同时探讨AGS对Pb(II)的吸附行为与机制.结果表明,Pb(II)会破坏AGS的三维结构,致使污泥生物量下降和沉降性能恶化.同时促进微生物分泌胞外聚合物(Extracellular Polymeric Substances, EPS),但由于污泥内部孔道堵塞使得微生物以EPS为碳源,且Pb(II)的持续毒性超过EPS保护阈值,最终导致EPS含量由对照组的(295.90±6.22) mg·g-1 最低降至(217.23±7.35) mg·g-1.在20 mg·L-1 Pb(II)的长期暴露下,AGS同步硝化反硝化作用明显削弱,导致TN去除率由对照组的97.15%大幅下降至70.04%.高通量结果表明,ExiguobacteriumCandidatus_Competibacter菌属在高浓度Pb(II)的胁迫下成为优势菌属,而与脱氮相关的Pseudomonas菌群相对丰度锐减至6.87%.此外,当Pb(II)进水浓度为1 mg·L-1时,AGS可对其实现99.15%的高效去除.整个过程的吸附动力学可以用准二级模型充分解释,且由多种扩散机制调控.使用Freundlich等温线模型可以较好地描述Pb(II)的吸附,Temkin模型也进一步证实化学吸附可在去除过程中起主导作用.结合扫描电子显微镜、X射线能谱仪和红外光谱表征结果,确定AGS对Pb(II)的吸附机制是以表面络合和沉淀反应为关键途径,并伴有离子交换和静电吸附.  相似文献   

17.
污泥基吸附剂被广泛用于水和土壤中各种污染物的治理,是资源化利用的有效途径.以酸性矿山废水(AMD)污泥为骨料,玉米秸秆为还原剂,膨润土为载体,采用固相还原法制备污泥复合材料,并比较了不同原料配比和不同煅烧温度制备的复合材料吸附As (Ⅴ)的性能,探究了溶液pH、吸附剂投加量和竞争离子等对材料吸附As (Ⅴ)的影响,使用SEM-EDS、XRD、FT-IR、BET和XPS等分析技术对材料性能进行表征,探讨其吸附机制.结果表明,在900℃时AMD污泥:玉米秸秆:膨润土=2 :1 :1制备出的材料吸附As (Ⅴ)效果最好,材料表面生成大量Fe3O4、Fe2 O3和Fe0颗粒.该材料对As (Ⅴ)的吸附符合准二级动力学模型和Freundlich吸附等温模型,最大吸附容量为164.5mg ·g-1,比原始AMD污泥提高了4.4倍.静电吸附、含氧官能团络合作用、铁氧化层的吸附和Fe0释放出Fe2+/Fe3+形成Fe (OH)2/Fe (OH)3,与砷酸盐的共沉淀等是复合材料吸附As (Ⅴ)的主要作用机制.  相似文献   

18.
为了制备价廉高效的吸附材料,采用污水厂污泥为原料,以水热碳化法(hydrothermal carbonization,HTC)在不同温度(160、190、220和250℃)和不同反应时间(1、4、8和16 h)的条件下,制备出污泥水热炭(hydrochar)并应用于水中亚甲基蓝(methylene blue,MB)的吸附.通过BET、FT-IR和零电荷点等表征手段分析了水热炭的结构和理化性质,并结合批次实验、等温吸附和吸附动力学研究了水热炭对MB的吸附特性.结果表明,在190℃和4 h条件下制备的污泥吸附剂(SS190-4),其比表面积最大(11.916 m2·g-1),对亚甲基蓝(MB)的去除率高达96.44%.当溶液pH趋于碱性时更有利于污泥水热炭对MB的吸附,水热炭投加浓度为0.5 g·L-1时较为经济合理,当溶液中有共存离子时会抑制水热炭对MB的吸附能力.水热炭对MB的吸附更符合Langmuir等温方程,R2在0.966~0.988之间,在50℃下,水热炭对MB的最大模型吸附量为400 mg·g-1.其吸附过程符合准二级动力学模型,是自发的放热反应.  相似文献   

19.
采用原位沉淀方法制备了一种具有网格结构的铁-镧/壳聚糖微球(FLCB),该吸附剂可在较宽的pH范围内高效吸附砷酸盐.与壳聚糖微球(CB)相比,铁和镧离子的加入扩大了吸附剂的pH耐受范围.当pH=10时,其对砷酸盐的吸附效率高达80%.Fe—O键和La—O键的加入增加了FLCB的总正电荷密度,在一定程度上提高了FLCB的吸附容量.拟二级动力学模型和Langmuir吸附等温线(Qmax=105.01 mg·g-1)可以更好地描述吸附过程.FLCB在砷酸盐上的吸附机理为:双齿双核或单齿单核形成的表面络合物占主导地位,吸附剂与砷酸盐的静电吸引占次要地位.  相似文献   

20.
铈改性水葫芦生物炭对磷酸盐的吸附特性   总被引:4,自引:4,他引:0  
王光泽  曾薇  李帅帅 《环境科学》2021,42(10):4815-4825
本研究通过共浸渍-热解法开发了一种铈改性水葫芦生物炭吸附剂(Ce-BC),用以去除实际废水中的磷酸盐,考察了Ce-BC投加量、废水pH值、反应时间及共存的竞争性离子对吸附过程的影响.结果表明,当Ce-BC投加量为0.4 g·L-1,初始磷酸盐溶液pH值介于3~10时,Ce-BC对磷酸盐的吸附性能最佳,最大吸附量达到35.00 mg·g-1.Ce-BC对磷酸盐的吸附过程符合准二级动力学模型,并能在1 h内达到98%的磷酸盐去除率,吸附速率快.此外,Ce-BC具有较高的抗阴离子干扰能力,且具有良好的再生性能,Ce-BC经过4次再生后仍能保持90%以上的初始吸附效率.场发射扫描电镜-能量色散光谱(FESEM-EDS)、傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)和X射线光电子能谱(XPS)等表征结果表明,Ce-BC对磷酸盐的吸附机制主要包括配体交换和内球络合.本研究制备的Ce-BC吸附剂,可以有效去除及回收实际生活污水中的磷酸盐,在避免水体富营养化的同时实现磷资源的回收利用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号