首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A probabilistic approach is presented for estimating the release of contaminants by leaching, when wastes are being considered for disposal in a class of landfills but the specific landfill disposal site is uncertain. A simple percolation and equilibrium-based release model is used in conjunction with laboratory testing results and observations of field leachate characteristics for municipal solid waste landfills, hazardous waste landfills and industrial co-disposal landfills. The approach is applied for assessing the efficacy of potential treatment processes for mercury contaminated soils. For each landfill scenario, historical values of leachate pH and annual leachate generation quantities were used to derive the probability distribution functions of the field pH and LS ratio that may be expected to contact the disposed material over an estimated time period of 100 years. For each potential treatment process, laboratory testing was used to establish the treated material's leaching characteristics as a function of pH LS ratio. This approach allowed determination of distribution frequencies and limit values for release estimates instead of single point estimates. The probability of the mass of a constituent of interest released exceeding a hypothetical threshold was examined for each treatment process and landfill system. Results of the probabilistic analysis allowed for integration of a range of data and provided a good basis for assessing the efficacy of the examined treatment processes over the three assumed disposal scenarios.  相似文献   

2.
The accuracy of predictions of quantities of solid waste based upon waste generation factors reported in the literature was tested. Estimates of residential, industrial, and commercial solid waste quantities were computed for Brown County. Wisconsin U.S.A. and compared to actual waste quantities received. Predictions were within 20% for residential wastes and for some predictions of commercial wastes but far from the mark for industrial and construction-demolition wastes.  相似文献   

3.
The monthly quantities of residential, commercial, industrial and other wastes generated between 1985–1989 in Brown County, Wisconsin, U.S.A. are analysed. For each month and each waste type, the quantity of waste generated is compared with the monthly average and the difference is computed as a percentage. The means and standard deviations of these percentage differences are computed for each month using the five values computed for each of the five years. The generation patterns for residential, commercial, construction and demolition wastes, and discarded tires show lower than average generation in winter months and higher than average in summer months, with the residential and commercial components being the most predictable. Ash has the opposite pattern with the most produced in winter months. General industrial wastes are produced at an almost constant rate throughout the year, typically varying by less than 10% from the monthly average. Sludge appears to be the least predictable component of the waste stream.  相似文献   

4.
This study includes a survey of the procedures available, techniques, and methods of handling and disposing of medical waste at medium (between 100 and 200 beds) to large (over 200 beds) size healthcare facilities located in Irbid city (a major city in the northern part of Jordan). A total of 14 healthcare facilities, including four hospitals and 10 clinical laboratories, serving a total population of about 1.5 million, were surveyed during the course of this research. This study took into consideration both the quantity and quality of the generated wastes to determine generation rates and physical properties. Results of the survey showed that healthcare facilities in Irbid city have less appropriate practices when it comes to the handling, storage, and disposal of wastes generated in comparison to the developed world. There are no defined methods for handling and disposal of these wastes, starting from the personnel responsible for collection through those who transport the wastes to the disposal site. Moreover, there are no specific regulations or guidelines for segregation or classification of these wastes. This means that wastes are mixed, for example, wastes coming from the kitchen with those generated by different departments. Also, more importantly, none of the sites surveyed could provide estimated quantities of waste generated by each department, based upon the known variables within the departments. Average generation rates of total medical wastes in the hospitals were estimated to be 6.10 kg/patient/day (3.49 kg/bed/day), 5.62 kg/patient/day (3.14 kg/bed/day), and 4.02 kg/patient/day (1.88 kg/bed/day) for public, maternity, and private hospitals, respectively. For medical laboratories, rates were found to be in the range of 0.053-0.065 kg/test-day for governmental laboratories, and 0.034-0.102 kg/test-day for private laboratories. Although, based on the type of waste, domestic or general waste makes up a large proportion of the waste volume, so that if such waste is not mixed with patient derived waste, it can be easily handled. However, based on infections, it is important for healthcare staff to take precautions in handling sharps and pathological wastes, which comprises only about 26% of the total infectious wastes. Statistical analysis was conducted to develop mathematical models to aid in the prediction of waste quantities generated by the hospitals studied, or similar sites in the city that are not included in this study. In these models, the number of patients, number of beds, and hospital type were determined to be significant factors on waste generation. Such models provide decision makers with tools to better manage their medical waste, given the dynamic conditions of their healthcare facilities.  相似文献   

5.
Medical waste production at hospitals and associated factors   总被引:2,自引:0,他引:2  
This study was conducted to evaluate the quantities of medical waste generated and the factors associated with the generation rate at medical establishments in Taiwan. Data on medical waste generation at 150 health care establishments were collected for analysis in 2003. General medical waste and infectious waste production at these establishments were examined statistically with the potential associated factors. These factors included the types of hospital and clinic, reimbursement payment by National Health Insurance, total number of beds, bed occupancy, number of infectious disease beds and outpatients per day. The average waste generation rates ranged from 2.41 to 3.26kg/bed/day for general medical wastes, and 0.19-0.88kg/bed/day for infectious wastes. The total average quantity of infectious wastes generated was the highest from medical centers, or 3.8 times higher than that from regional hospitals (267.8 vs. 70.3Tons/yr). The multivariate regression analysis was able to explain 92% of infectious wastes and 64% of general medical wastes, with the amount of insurance reimbursement and number of beds as significant prediction factors. This study suggests that large hospitals are the major source of medical waste in Taiwan. The fractions of medical waste treated as infectious at all levels of healthcare establishments are much greater than that recommended by the USCDC guidelines.  相似文献   

6.
A comprehensive understanding of the quantities and characteristics of the material that needs to be managed is one of the most basic steps in the development of a plan for solid waste management. In this case, the material under consideration is the solid waste generated in healthcare facilities, also known as healthcare waste. Unfortunately, limited reliable information is available in the open literature on the quantities and characteristics of the various types of wastes that are generated in healthcare facilities. Thus, sound management of these wastes, particularly in developing countries, often is problematic. This article provides information on the quantities and properties of healthcare wastes in various types of facilities located in developing countries, as well as in some industrialized countries. Most of the information has been obtained from the open literature, although some information has been collected by the authors and from reports available to the authors. Only data collected within approximately the last 15 years and using prescribed methodologies are presented. The range of hospital waste generation (both infectious and mixed solid waste fractions) varies from 0.016 to 3.23kg/bed-day. The relatively wide variation is due to the fact that some of the facilities surveyed in Ulaanbaatar include out-patient services and district health clinics; these facilities essentially provide very basic services and thus the quantities of waste generated are relatively small. On the other hand, the reported amount of infectious (clinical, yellow bag) waste varied from 0.01 to 0.65kg/bed-day. The characteristics of the components of healthcare wastes, such as the bulk density and the calorific value, have substantial variability. This literature review and the associated attempt at a comparative analysis point to the need for worldwide consensus on the terms and characteristics that describe wastes from healthcare facilities. Such a consensus would greatly facilitate comparative analyses among different facilities, studies and countries.  相似文献   

7.
The aim of this study is to investigate the quality and quantity of hospital wastes in Iran. The generated hospital wastes have been estimated by the number of hospitals and the number of active beds in each province of Iran in 2001. All data and information have been gathered from: (i) Iran Statistics Center, (ii) literature review, and (iii) hospital waste investigations for an average hospital. Physical analyses have been conducted in terms of various materials (plastic, textile, paper, metal, and others) and components (biological, infectious, medical, and regular wastes). Based on the above-mentioned investigation and information, a mathematical model has been developed to calculate the generation of (infectious) hospital wastes for any desired year. Utilizing the model, generated infectious hospital wastes has been estimated as 698,937 tones for 2008 (short-term) and 3,494,387 tones for 2028 (long-term period). If the real infectious wastes are collected separately, then the generated infectious wastes will be reduced by 15.1% of the above-mentioned amount (139,787 tones for 2008, and 698,877 tones for 2028). Results of physical analysis show the components of the hospital waste as: (a) infectious, 67.3%; (b) medical, 8.8%; (c) biological, 1.8%; and (d) common municipal wastes, 22.1%. An appropriate collection method requires training the staff at hospitals along with preparation of the required facilities. Of course, both of these requirements are cost intensive.  相似文献   

8.
The effectiveness of different drying systems used for the dehydration of certain fractions of biodegradable municipal solid wastes with a high moisture content (fruit and vegetable remains) was analyzed. Some tests using small amounts of the material were carried out in natural and forced convection ovens. For larger quantities of wastes, a discontinuous cabinet dryer and a continuous rotary dryer were used. With these dryers, the moisture content was reduced from 800 to 100 g kg(-1). It was verified that the continuous rotary dryer was the most efficient type of equipment studied, since it allowed a dried waste to be obtained with better nutritional and microbiological qualities and in accordance to the specifications of the products for animal feeding.  相似文献   

9.
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007–2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.  相似文献   

10.
Events like trade fairs are a complex service activity with a considerable economic, social and environmental impact due, among other factors, to their high level of waste generation. There are few studies of the environmental impact associated with waste generation and typology. An environmental analysis methodology has been developed to characterise the waste associated with the temporary structures used at trade fair events: stands and communal spaces.This methodology has been checked in a pilot test at 6 closed trade fairs in Barcelona, with a range of between 60 and 4400 exhibitors. The methodology developed has made possible to obtain a waste generation profile according to the size of the fair and the types of stands. The stages with the largest amount of temporary structure wastes generated are the assembly and the dismantling of the trade fair.The results indicate that the most common wastes generated are the protective plastic from carpets at the assembly stage and the carpet itself at the dismantling stage. The stand carpet is collected in bulk, while the carpet from the communal spaces is recycled. As the size of the fair increases, and with it the proportion of stands with customised design (or non-reusable stands), the quantity of wood and hazardous waste increases.  相似文献   

11.
Material stocks in economic society are considered to represent a reserve for wastes and secondary resources. From the viewpoints of proper disposal and reutilization of stocked materials, accurate estimation of the amount of materials that will emerge as wastes or secondary resources in the future is important. We defined materials that have a high probability of emerging as wastes or secondary resources as “potential wastes and secondary resources” and estimated that amount for construction minerals in Japan as a case study. The following conclusions were drawn. (1) We classified materials that are input into economic society into four categories: potential wastes and secondary resources, potential dissipated materials, dissipatively used materials, and permanent structures. By clarifying the latter three non-potential wastes and secondary resources, we performed a more accurate assessment of the wastes and secondary resources that will emerge in the future. (2) The share of potential wastes and secondary resources was estimated to be about 30% of all construction minerals that have been input into and accumulated in Japanese economic society. (3) Information related to potential dissipated materials and dissipatively used materials will provide fundamental knowledge to support analyses of the environmental impacts and resource losses which these materials might generate.  相似文献   

12.
ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.  相似文献   

13.
The production of solid organic waste (SOW) such as sewage sludge (SS) or municipal solid waste (MSW) has been continuously increasing in Europe since the beginning of the 1990'. Today, the European Union encourages the stabilization of these wastes using biologic processes such as anaerobic digestion and/or composting to produce bio-energy and organic fertilizers. However, the design and management of such biologic processes require knowledge about the quantity and quality of the organic matter (OM) contained in the SOW. The current methods to characterize SOW are tedious, time-consuming and often insufficiently informative. In this paper, we assess the potential of solid-phase fluorescence (SPF) spectroscopy to quickly provide a relevant characterization of SOW. First, we tested well known model compounds (tryptophan, bovine serum albumin, lignin and humic acid) and biologic matrix (Escherichia coli) in three dimensional solid-phase fluorescence (3D-SPF) spectroscopy. We recorded fluorescence spectra from proteinaceous samples but we could not record the fluorescence emitted by lignin and humic acid powders. For SOW samples, fluorescence spectra were successfully recorded for MSW and most of its sub-components (foods, cardboard) but impossible for SS, sludge compost (SC) and ligno-cellulosic wastes. Based on visual observations and additional assays, we concluded that the presence of highly light-absorptive chemical structures in such dark-colored samples was responsible for this limitation. For such samples, i.e. lignin, humic acid, SS, SC and ligno-cellulosic wastes, we show that laser induced fluorescence (LIF) spectroscopy enables the acquisition of 2D fluorescence spectra.  相似文献   

14.
Effective waste reduction and recycling is predicated upon credible data on refuse generation and disposal. Despite improvements in the quality of data for municipal solid wastes (MSW) disposal, dependable generation and recycling statistics to support planning, regulation and administration are lacking. The available aggregates on national waste production from two sources do not conform to each other and fail to serve the requirements of local solid waste planning. As recycling estimates will be difficult to discern, the collection of generation data based on weighing waste samples at generator sites has been portrayed as the key for developing sustainable local databases. The coefficients developed from the databases for the various categories of residential, commercial, industrial and institutional wastes can be used as variables for waste generation models.  相似文献   

15.
16.
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).  相似文献   

17.
Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment.  相似文献   

18.
A methodology for estimating the methane emissions from waste landfills in Hanoi, Vietnam, as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management, interviews with persons in charge, and field investigations at landfill sites. The waste management system in Hanoi was analyzed to evaluate the methane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area, and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2, and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5, and 4.38 ml/min/m2, respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present, and future.  相似文献   

19.
Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.  相似文献   

20.
In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present paper are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号