首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
F. Sander 《Marine Biology》1981,64(2):199-205
Nutrient enrichment of inshore waters is considered the ultimate cause of the island mass effect of Barbados, and other tropicalislands. The present study is an evaluation of the three principal causative mechanisms of enrichment of Barbados coastal waters, i.e. run-off from land, a nutrient exchange between the benthos and overlying waters and internal waves of lunar periodicity. Attempts to link high precipitation to high primary production rates or low salinity with high nutrient levels were unsuccessful. This suggested that land-drainage was not an important factor. Comparisons of nutrient concentrations and C14 fixation rates in waters overlying two contrasting (sand and coral) benthic situations showed trends rather than statistically valid differences in these production variables. A simple calculation of potential nutrient supply versus actual demand showed that internal waves represent a potential source of enrichment. It is suggested that internal waves contribute to the observed high levels of standing crop and production which are characteristic of an island mass effect.  相似文献   

2.
The burrowing marine shrimp Callianassa australiensis (Dana) was collected from an uncontaminated area in Western Port, Victoria, Australia in 1977. The shrimp were exposed to cadmium-contaminated water and sediment for 8 wk. The concentrations ranged from 0.5 to 63 g Cd 1-1 for water and 0.5 to 63 g Cd g-1 for sediment. The shrimp accumulated cadmium from water at a rate commensurate with increases in the concentration of cadmium in water and the duration of the experiment. Although the cadmium concentration in the sediments was 103 times higher than that in water, it hat no effect on cadmium uptake by the shrimp. The concentration factors decreased with increasing concentration of cadmium in water but increased as the duration of exposure increased. The shrimp dry weight decreased with increasing concentration of cadmium in water and duration of exposure. As was the case with cadmium uptake by the shrimp, these two factors acted interactively on the shrimp dry weight, but the third factor, concentration of cadmium in sediment, had no effect.  相似文献   

3.
Variations in number and biomass of benthic bacteria were examined in the surface sediments of a Mediterranean seagrass bed [Posidonia oceanica (L.) Delile] in the Gulf of Marconi (northwestern Mediterranean Sea) from 1990 to 1991. The annual dynamics of benthic bacterial density and biomass were compared to changes in elemental (organic C and total N) and biochemical (lipids, proteins, carbohydrates) composition of sediment organic matter, as well as to microphytobenthic biomass, dissolved inorganic nutrients and ATP. Bacterial densities exhibited marked seasonal variations (5.12 to 322.7x108 cells g-1 sediment dry wt) with highest values in late spring. Bacterial standing stocks (15.8 to 882.33 g C g-1 of sediment dry wt) were high. Bacterial biomass did not correlate with organic C, total N or to specific biochemical components, but correlated significantly with chlorophyll a, ATP and porewater phosphate concentrations. There is evidence that benthic bacteria were responding to variations of algal biomass. Bacterial biomass accounted, on average, for 30% of total living carbon (calculated on the basis of the ATP concentrations) and 8.4% of total organic carbon.  相似文献   

4.
Temperature, salinity, bottom-sediment type, and zinc concentration all influenced Cd uptake by 4 marine bivalves (Mya arenaria, Mytilus edulis, Mulinia lateralis and Nucula proxima) in short-term static assay systems using 109Cd as a tracer. The experimental system consisted of aquaria containing 20 l of seawater maintained under controlled light and temperature conditions. The water contained either 5 or 20 g/l Cd and tracer. Distribution and kinetics of the metal were monitored in the water column and organisms. The results demonstrate that Cd uptake rates differed widely among the organisms tested. An increase in temperature increased Cd uptake rate by all test organisms. A decrease in salinity increased Cd uptake by all organisms tested. The presence of bottom sediment depresses Cd accumulation in some benthic animals. Zinc in concentrations of 0.5 mg/l substantially decreased Cd uptake by Mytilus edulis and Mulinia lateralis. It is suggested that all important species and environmental variables be considered when studying heavy-metal uptake by marine organisms or when establishing water-quality criteria.  相似文献   

5.
Orthophosphate uptake by a natural estuarine phytoplankton population was estimated using two methods: (1) 32P uptake experiments in which filters of different pore sizes were used to separate plankton size-fractions; (2) 33P autoradiography of phytoplankton cells. Results of the first method showed that plankton cells larger than 5 m were responsible for 2% of the total orthophosphate uptake rate. 98% of the total uptake rate occurred in plankton composed mostly of bacteria, which passed the 5 m screen and were retained by the 0.45 m pore-size filter. There was no orthophosphate absorption by particulates in a biologically inhibited control containing iodoacetic acid. Orthophosphate uptake rates of individual phytoplankton species were obtained using 33P autoradiography. The sum of these individual rates was very close to the estimated rate of uptake by particulates larger than 5 m in the 32P labelling experiment. Generally, smaller cells were found to have a faster uptake rate per m3 biomass than larger cells. Although the nannoplankton constituted only about 21% of the total algal biomass, the rate of phosphate uptake by the nannoplankton was 75% of the total phytoplankton uptake rate. Results of the plankton autoradiography showed that the phosphate uptake rate per unit biomass is a power function of the surface: volume ratio of a cell; the relationship is expressed by the equation Y=2x10-11 X 1.7, where Y is gP m-3 h-1 and X is the surface: volume ratio. These results lend support to the hypothesis that smaller cells have a competitive advantage by having faster nutrient uptake rates.  相似文献   

6.
Common mussels, Mytilus edulis (shell length 19 to 21 mm, average dry weight 30 mg) were maintained for 6 weeks in sea water containing different concentrations of lead (0.005 to 5 mg · l-1). The lead concentration in the mussels' whole soft parts was analysed at different times during the experiment. A constant rate of lead uptake, linearly dependent on the lead concentration of the medium, was observed. Thus, the temporal change of the concentration factor is also linear (regression coefficient 149.9 daily). Rate of lead loss, measured after transferring the mussels into natural sea water, is linearly dependent on the original lead concentration in the soft parts. Rates of uptake and loss in large mussels (shell length 45 to 55 mm, average dry weight 750 mg) are less than those in small mussels (shell length 19 to 21 mm, average dry weight 30 mg). During a much more extended experimental period, adjustment to a steady state is expected to occur; rates of lead uptake and loss are then non-linear. Lead uptake by individual organs (kidney, gills, adductor muscle, digestive gland, foot, mantle with gonads) of large M. edulis (shell length 45 to 55 mm, average dry weight 750 mg) was analysed in 2 test series. In the test series medium, the mussels were kept in a seawater medium containing 0.01 mg. Pb.l-1. In the test series food, the mussels were kept in natural sea water but fed with the green algae Dunaliella marina containing lead (approximately 600 g.g-1 dry weight). The lead quantity given per mussel per day was about 2 g in both test series. Within 35 days, the mussels of test series medium took up 29% of the total amount of lead given, those of test series food took up 23.5%. In all organs, lead concentration increased, but rates of uptake differed; the kidney displayed by far the highest rate of uptake. With these physiological properties M. edulis is an ideal indicator organism for lead pollution in the marine environment. A biologic calibration curve, the relationship between lead concentration in the mussels' whole soft parts at equilibrium and lead concentration in sea water, is presented.This paper forms part of a doctoral thesis in biology at Hamburg University  相似文献   

7.
Net-zooplankton biomass of the Adriatic Sea   总被引:1,自引:0,他引:1  
On the basis of 1 107 plankton samples collected during 1971–1981 in the different parts of the Adriatic Sea, the horizontal distribution of net zooplankton biomass, expressed as dry weight and ash-free dry weight, is discussed. The northern Adriatic combined with the Gulf of Trieste usually had the highest standing crop of zooplankton. Biomass in other regions was lower and more uniform. In general, the highest zooplankton stocks came from the shallow regions close to the coast where the sources of enrichment from the land (fresh water inflow, land drainage. pollution where it exists) and the shallow sediments are the highest. We believe the elevated zooplankton biomass encountered in the north Adriatic to be due to proliferation of tolerant non-selective feeding zooplankton species, such as copepods, which can use detritus as a major fraction of their diet. The northern Adriatic is rich in living and non-living suspended particles throughout the year and can thus maintain high zooplankton biomass. This conclusion is probably valid for similar regions of the Mediterranean Sea.  相似文献   

8.
Relative rates of the anaerobic decomposition of organic matter in the upper 10 cm of sediment from two stations in central Long Island Sound, USA, were compared. Sediment samples from discrete depth intervas were incubated anoxically and changes in SO 4 = , NH 4 + , bacterial numbers, extractable adenosine triphosphate (ATP), organic matter, and organic carbon were measured as a function of time and temperature. At both stations (15 and 34 m water-depths, respectively), the calculated rates of SO 4 = reduction and NH 4 + production decreased exponentially (approximately) with depth below the sediment-water interface. Over the same depth interval, ATP concentrations dropped by a factor of 6 to 7 and bacterial numbers were lower by a factor of 2 to 3. These decreases in SO 4 = reduction, NH 4 + production, bacterial numbers, and ATP, reflect a change in the physiological state of microbial populations with depth in the sediment and are consistent with the conclusions that the quantity of easily utilizable organic matter changes rapidly below the sediment surface and that food limitation controls the basic depth distribution of microbial activity. The average rates of SO 4 = reduction, 29 to 39 mM year-1 (22°C), in the top 10 cm are similar at both stations studied here, as well as at an additional station from a previous study. In contrast, average NH 4 + production differs by a factor of 2 at the two stations, reflecting differences in the C:N ratio of the organic matter supplied to the sediment surface and differences in particle reworking by macrofauna at each site. The apparent activation energy of SO 4 = reduction was 19±1 kcal mole-1 and that of NH 4 + production, 18±3 kcal mole-1. The overall quantity of carbon required to support the calculated average SO 4 = reduction rate in the top 10 cm is 23 g C m-2 year-1 and represents 36% of all the carbon available to the benthos annually and 11% of the net primary production in the water column. Directly measured fluxes of NH 4 + from sediments to overlying water at both stations agree well with those predicted from production rates obtained by the incubation techniques.  相似文献   

9.
Seasonal variations in bacterial populations (total number, biomass, biomass-spectrum, number of dividing cells) as well as in concentrations and decomposition rates of particulate organic material were followed in a sandy mud sediment of the Western Kiel Bight (Baltic Sea; FRG). The strong seasonal variations observed could be traced back to the effect of certain ecological situations and events in the sediment from which the input of the phytoplankton blooms in autumn and spring, respectively, the accumulation of organic material during winter, and the spring development of the benthic fauna turned out to be the most important. Bacterial carbon net production following the breakdown of the phytoplankton blooms ranged between 9 g (autumn) and 16 g (spring) per g of dry weight sediment per day. The consequences of shifts in the size composition of the bacterial populations as well as the importance of the measurement of enzymatic decomposition rates of particulate organic material in sediments are demonstrated and discussed in relation to the events mentioned above.Publication No. 420 of the Joint Research Program at Kiel University (Sonderforschungsbereich 95 der Deutschen Forschungsgemeinschaft)  相似文献   

10.
A technique for measuring rates of RNA and DNA synthesis in sedimentary microbial communities has been adapted from methods developed for marine and freshwater microplankton research. The procedure measures the uptake, incorporation and turnover of exogenous [2, 3H]-adenine by benthic microbial populations. With minor modification, it is applicable to a wide range of sediment types. Measurement of nucleic acid synthesis rates are reported from selected benthic marine environments, including coral reef sediments (Kaneohe Bay, Oahu, Hawaii), intertidal beach sands (Oahu and southern California) and California borderland basin sediment (San Pedro Basin), and comparisons are made to selected water-column microbial communities. Biomass-specific rates of nucleic acid synthesis in sediment microbial communities were comparable to those observed in water-column assemblages (i.e., 0.02 to 2.0 pmol deoxyadenine incorporated into DNA [ng ATP]-1 h-1 and 0.2 to 8.9 pmol adenine incorporated into RNA [ng ATP]-1 h-1). DNA synthesis rates were used to calculate carbon production estimates ranging from 2 g C cm-3 h-1 in San Pedro Basin sediment (880 m water depth) to 807 g C cm-3 h-1 in coral reef sediment from the Kaneohe Bay. Microbial community specific growth rate, (d-1), estimated from DNA synthesis rates in surface sediments ranged from 0.1 in San Pedro Basin to 4.2 in Scripps Beach (La Jolla, California) intertidal sand.  相似文献   

11.
K. Gocke 《Marine Biology》1977,40(1):87-94
The distribution of some microbial parameters was studied at 3 stations in the Central Baltic Sea (Bornholm Basin, BB; Danzig Deep, DD; and Gotland Deep, GD) during May 1976. The following analyses were performed: total bacterial numbers and biomass, viable counts and maximum uptake velocity (V max) of glucose. The values found for thesurface, samples were, total bacterial counts: 0.6x106 (BB); 1.7x106 (DD); 0.4x106 (GD) cells/ml; bacterial biomass: 1.9 g C/l (BB); 6.9 g C/l (DD); 1.6 g C/l (GD); viable counts: 0.37x103 (BB); 17x103 (DD); 0.4x103 (GD) counts/ml; V max: 0.01 g glucose-C/l (BB), 0.06 g glucose-C/l (DD); 0.01 g glucose-C/l (GD). The relatively high microbial numbers and activities of the Danzig Deep may be associated with the fertilization of the area by the River Vistula. The vertical distribution of the microbial parameters in the Bornholm Basin and Danzig Deep showed high values both in the top layer (0 to 20 m) and in the deep layer (>40 m). In the intermediate layer, however, the values decreased significantly. It is suggested that the high values of the microbial parameters at depth are caused by at least two major processes during the inflow of North Sea water into the deep layers of the Baltic Sea: (1) the North Sea water may already have contained high numbers of bacteria; (2) during the inflow, the high concentrations of bacteria normally located at the sediment-water interface are distributed throughout the whole deep layer by mixing.

Beitrag Nr. 143 aus dem Sonderforschungsbereich 95 Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

12.
The distribution of phycoerythrin-richSynechococcus spp. relative to eukaryotic algae and the contribution ofSynechococcus spp. toin situ primary production were compared at a neritic front, in warm-core eddy 84-E, and at Wilkinson's Basin, during a cruise to the Northwest Atlantic Ocean in July/August 1984. Immunofluorescence analyses ofSynechococcus strains demonstrated the restricted distribution of the tropical oceanic serogroup to the warm-core eddy, while strains of the neritic serogroup and those labelled by antiserum directed against a motile strain, were abundant in all three water masses. Although the majority ofSynechococcus spp. cells were observed in the 0.6 to 1 m fraction, an increasing proportion of the totalSynechococcus spp. cells were found in the 1 to 5 m fraction as nitrate concentrations increased near the base of the thermocline. From immunofluorescence analyses, we determined that the increasing proportion of largerSynechococcus spp. cells at depth was not the result of a change in strain composition, and may therefore be associated with increasing cell volume due to the enhanced nutrient supply. The contribution of the different size fractions to the total standing crop of chlorophyll and thein situ rate of photosynthesis was distincty different for the three water masses. At the neritic front, the larger photoautotrophs of the 1 to 5 m and >5 m fractions were the major contributors to chlorophyll concentrations and primary production.Synechococcus spp. appeared to provide only 6% of the dawn-to-duskin situ primary production at the neritic front. In modified Sargasso water in the warm-core eddy,Synechococcus spp. contributed 25% to thein situ rate of integrated primary production. In this warm-core eddy, the 0.2 to 0.6 m fraction made a major contribution to the standing crop of chlorophyll and primary production that equalled or exceeded that of the larger sze categories. Furthermore, at the bottom of the euphotic layer, eukaryotes numerically dominated the 0.2 to 0.6 m fraction, which contributed 61% of the primary productivity. At Wilkinson's Basin, theSynechococcus spp.-dominated 0.6 to 1.0 m fraction made the greatest contribution to the standing crop of chlorophyll an primary production, while smaller photoautotrophs (0.2 to 0.6 m) accounted for little of the chlorophyll or photosynthetic rates measured over the euphotic layer. Largest numbers ofSynechococcus spp. (2.9x108 cells l-1) occurred at the 18% isolume, coincident with a shoulder in the chlorophyll fluorescence profile and the site of maximumin situ primary productivity. At Wilkinson's Basin,Synechococcus spp. contributed 46% to thein situ photosynthesis integrated over the water-column.  相似文献   

13.
Nitrogen regeneration accompanying the bacterial degradation of a variety of amino acids supplied at 10.0 M to samples of coastal plankton communities collected near Halifax, Nova Scotia, Canada was examined. A lag period characterized by a low rate of amino acid uptake and ammonia release was typically followed by a dramatic increase in the rates of uptake and ammonia release. The duration of the lag period varied with the amino acid tested. The ratio of the final ammonia concentration to the nitrogen supplied as amino acid was taken as the regeneration ratio. This value varied from 0.58 to 0.86 for L-arginine and 0.38 to 1.17 for the other amino acids tested, with an average value of 0.74. The presence of inorganic fixed nitrogen at 10.0 M had no effect on the degradation of L-arginine. Other organic compounds supplied at 10.0 M decreased the lag period for L-arginine uptake and degradation. Glucose supplied at 50.0 M decreased the nitrogen regeneration ratio, but did not further decrease the lag for L-arginine degradation. Carbon respiration ratios for L-arginine, L-glutamate, and L-lysine were 0.70, 0.68, and 0.65 when the nitrogen regeneration ratios were 0.86, 0.38, and 0.77, respectively.  相似文献   

14.
Mysids are important components of the zooplankton biomass of estuaries and coastal regions. Twelve species were identified from the Bristol Channel and Severn Estuary (British Isles). The most abundant species wasSchistomysis spiritus (Norman), the majority of which occurred in the Channel within a salinity range of 27 to 34 S. The seasonal distribution and numerical abundance of this species are described over the period November 1973 to February 1975. The peak of abundance ofS. spiritus occurred in the Inner Channel in September (mean of 14 individuals m-3, ca. 250 individuals m-2 for this sub-region) when it represented 76% of the omnivore biomass (g C m-3); for the 364 d from 4 November 1973, the species contributed 43% of the total integrated omnivore standing stock. This peak of biomass was the product of the development of the juveniles from the reproductive period in the spring. Correlation analyses were carried out betweenS. spiritus biomass and 10 physical and biotic variables for 2 mo, November 1973 and September 1974. Temperature and salinity, which are simple indices of seasonal change, exhibited significant correlations with the mysid's abundance in both months. These correlations do not necessarily imply causal relationships or mechanisms between the distribution and abundance of the species and these variables. Clearly, in such a complex environment as an estuarine ecosystem a single variable is unlikely to control the abundance of a species, it is more the result of the combined influence of a number of variables acting in concert.  相似文献   

15.
Groups of queens, Chlamys opercularis (L.), were maintained under semi-natural conditions for a period of 18 months while growth rates and spawning conditions were monitored. Temperature and phytoplankton standing crop (as chlorophyll a) were also measured. The data suggest that only 1 major growth ring is formed in 1 year (in spring), although disturbance rings may be present. Rings are the result of the build-up of a number of small growth increments (striae) formed as successive lamellae are laid down. One lamella is probably laid down during 1 day, but a lamella is not necessarily laid down every day. Lamellae are laid down most regularly when temperature is moderately high and food availability is good. It seems likely, however, that poor food availability can limit growth and thus restrict the formation of lamellae even under field conditions. Spawning does not seem to induce the formation of growth checks.  相似文献   

16.
The dissolved organic nitrogen (DON) pool in marine waters contains a diverse mixture of compounds. It is therefore difficult to accurately estimate planktonic uptake of DON using the limited number of radiolabeled compounds commercially available. We describe a method to estimate DON uptake rates using 15N-labeled DON recently released from phytoplankton. To make 15N-labeled DON, we incubated surface water with 15NH 4 + and then isolated the DON, including any recently released DO15N, with ion retardation resin. This DON was then added to a freshly collected water sample from the same environment to quantify the rate of DON uptake. The technique was applied to investigate rates of DON uptake relative to inorganic nitrogen in the mesohaline Chesapeake Bay during May 1990 and August 1991. The May experiment took place after the spring bloom, and rates of DON uptake [ranging from 0.31 to 0.53 g-atom (g-at) Nl-1 h-1] often exceeded rates of NH 4 + and NO 3 - uptake combined. The rates of DON uptake at this time were higher than estimated bacterial productivity and were not correlated with bacterial abundance or bacterial productivity. They were, however, correlated with rates of NO 3 - uptake. In May, we estimate that only 7 to 32% of DON uptake was a result of urea utilization. In contrast, in August, when regenerated nutrients predominate in Chesapeake Bay, rates of DON uptake (ranging from 0.14 to 0.51 g-atom Nl-1 h-1) were an average of 50% of the observed rates of NH 4 + uptake. Consistent with the May experiment, rates of DON uptake were not correlated with bacterial production. A sizable fraction of DON uptake, however, appeared to be due to urea utilization; rates of urea uptake, measured independently, were equivalent to an average of 74% of the measured rates of DON uptake. These findings suggest that, during both periods of study, at least a fraction of the measured DON uptake may have been due to utilization by phytoplankton.  相似文献   

17.
Glucose uptake was measured at three different stations in the northwestern Pacific Ocean. The measurements were made at various temperatures (5° to 35°C) and glucose concentrations (3 to 100 g glucose/l). The uptake of almost all samples taken from the surface to 1,500 m was affected primarily by temperature. The temperature dependence of samples from near the transition region between the Kuroshio and the Oyashio current waters was twice as large as that of both current samples. Furthermore, the samples from the former, transition, region and the aphotic samples of the latter, current, regions showed an optimal temperature 15° to 30°C higher than the in situ temperature; the optimal temperature was only 5° to 10°C higher in the photic samples of the stable region. The average potential glucose uptake at/near the optimal temperature was 0.026 g glucose/l/h in the photic zone and 0.015 g glucose/l/h in the aphotic zone. However, after correction by the in situ temperature, the uptake was 0.024 and 0.003 g glucose/l/h, respectively.  相似文献   

18.
Excretion of ammonia by mesozooplankton (>200 m zooplankton) and its potential contribution to the nitrogen requirement for phytoplankton growth has been estimated for different hydrographical situations along a transect across the Catalan Sea (Northwestern Mediterranean). The nitrogen excreted as ammonia was estimated from mesozooplankton biomass and specific excretion rates. Nitrogen requirements of phytoplankton were estimated by means of carbon fixation rates and C:N ratios of <200 m particulate organic matter. Minimum C:N ratios and maximum primary production, zooplankton biomass, phytoplankton nitrogen requirements, and nitrogen excretion of zooplankton occurred near the Catalan density front. On average, the nitrogen regenerated by the mesozooplankton accounted for 43% of the nitrogen requirements of the phytoplankton. The specific excretion rates of ammonia and the percentage of phytoplanktonnitrogen requirements supplied by excreted nitrogen were higher at coastal stations. In some coastal and frontal stations, the ammonia excreted exceeded the phytoplanktonnitrogen demand. Bacteria competing for nutrient supply and the possible uncoupling between rate processes and standing stocks of phyto- and zooplankton could explain the apparent excess of regenerated ammonia.  相似文献   

19.
Bacterial utilization of orthophosphate in an estuarine environment has been differentiated from algal utilization by using flow-filters of 5.0, 1.2 and 0.45 m poresize. Examination by light microscopy showed that most of the bacterial population passed through a 5.0-m filter, whereas most algae were retained. In all experiments, bacterial and algal cell numbers and biomass were estimated. P-uptake by algae and bacteria was closely correlated with cell biomass. P-uptake by algae was high only in the summer months, whereas P-uptake by bacteria was high throughout the year. Neither algal nor bacterial P-uptake, however, was correlated with temperature or dissolved orthophosphate, total organic phosphate or total phosphate concentrations. Cell biomass of algae at a given time had a high correlation with dissolved organic phosphate levels in 2 weeks prior to sampling (r=0.830) and a low correlation in the 2 weeks following sampling (r=0.0005). Algal cell numbers had a high correlation with bacterial cell numbers (r=0.950). The biomass of algae and bacteria also had a high correlation (r=0.902). The rate of P-uptake from the water by algae and bacteria varied with season and with the species composition of the natural population.  相似文献   

20.
Coral reef lagoons have generally been regarded as sinks for organic matter exported from more productive reef front and reef flat zones. The object of this study was to examine the importance of detritus as a carbon source for benthic communities in the lagoon at Davies Reef, central Great Barrier Reef. We report the results of seasonal measurements, taken in 1986, of bacterial numbers and production, protozoan numbers, community primary production and respiration in the sediments of Davies Reef lagoon. Deposition rates of organic matter in the lagoon were also measured. Deposition rates (±1 SE) of carbon ranged from 9.2 (±1.5) to 140.7 (±10.3) mg Cm-2d-1. Deposition rates were highest in winter and spring, lowest in summer. Rates of bacterial production ranged from 4.7 (±0.2) pmol thymidine incorporated g-1 dry wt (DW) h-1 in winter to 23.5 (±1.0) pmol thymidine incorporated g-1 DW h-1 in spring. The number of ciliates ranged from 65 (±10) to 356 (±50) cm-3 through the year and the number of large (20 m) flagellates from 38 (±7) to 108 (±16) cm-3. There were no clear relationships between the sediment organic content, detrital input or temperature and the rates of bacterial processes, community metabolism or the standing stocks of microbes in the lagoon. The relative significance of detritus and in situ primary production as sources of carbon in the lagoon varied with season. In summer and autumn, detritus was less important than primary production as a source of carbon (4 to 27% of total carbon input). In winter and spring, detritus input became more significant in supply of carbon to the sediments (32 to 67% of the total carbon input). The lagoon does not simply act as a sink for carbon exported from the reef flat. We calculate that only 5% of the net reef flat primary production reached lagoon sediments in summer, but nearly 40% in winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号