首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photochemical oxidants: state of the science   总被引:7,自引:0,他引:7  
Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.  相似文献   

2.
Several years of formaldehyde measurements at six rural European sites are compared with EMEP oxidant model calculations. The model results agree well with the measured values both with regard to average seasonal cycles as well as on an episodic day-to-day basis at all sites except for Ispra in Northern Italy. For several of the sites the agreement is better during the summer months whereas the model underestimates the concentrations in winter. The model results show that formaldehyde in summer is mainly controlled by photochemical processes such as reaction with OH, photolysis and formation through NO+peroxy radicals. Furthermore, in spite of the short chemical lifetime of formaldehyde in summer, emission pulses of volatile organic compounds (VOC) and isoprene influence formaldehyde concentrations even 48 h after the emission. These results indicate that formaldehyde is well suited for validating photochemical transport models on a long-range (European) scale. Furthermore, the reasonable agreement between model calculations and measurements for carbonyls presented here, combined with previous findings for non-methane hydrocarbons (NMHC) and evaluation of the condensed EMEP chemical mechanism against a detailed Master chemical mechanism gives encouraging support that the EMEP model describes the main ozone-forming photochemical processes in a reasonable way.  相似文献   

3.
In the United States, emission processing models such as Emissions Modeling System-2001 (EMS-2001), Emissions Preprocessor System-Version 2.5 (EPS2.5), and the Sparse Matrix Operator Kernel Emissions (SMOKE) model are currently being used to generate gridded, hourly, speciated emission inputs for urban and regional-scale photochemical models from aggregated pollutant inventories. In this study, two models, EMS-2001 and SMOKE, were applied with their default internal data sets to process a common inventory database for a high ozone (O3) episode over the eastern United States using the Carbon Bond IV (CB4) chemical speciation mechanism. A comparison of the emissions processed by these systems shows differences in all three of the major processing steps performed by the two models (i.e., in temporal allocation, spatial allocation, and chemical speciation). Results from a simulation with a photochemical model using these two sets of emissions indicate differences on the order of +/- 20 ppb in the predicted 1-hr daily maximum O3 concentrations. It is therefore critical to develop and implement more common and synchronized temporal, spatial, and speciation cross-reference systems such that the processes within each emissions model converge toward reasonably similar results. This would also help to increase confidence in the validity of photochemical grid model results by reducing one aspect of modeling uncertainty.  相似文献   

4.
Numerical simulations with photochemical transport models were independently performed for two domains situated in the Iberian Peninsula covering the Lisbon and Barcelona airsheds. Although the days chosen for simulation of the two cities are not the same, the synoptic situations in both cases, known as typical summertime situations, were similar, which allowed the development of typical mesoscale circulations, such as sea breezes and mountain and valley winds dominated by the Azores anticyclone. Emission inventories for the two areas were developed. The O3 concentrations recorded in both cities have a similar level. Nevertheless, O(x) values in Barcelona are higher than in Lisbon, which may, at a first glance, indicate an apparently more oxidant atmosphere in Barcelona. Photochemical modeling for the two cities has shown that the behavior of the circulatory patterns in both urban areas is rather different, which mainly has to do with the different strengths of the sea breeze and the topography, inducing an important offshore vertical layered dimension of pollutant transport in Barcelona versus an important inland horizontal transport in Lisbon.  相似文献   

5.
This work presents the results of one-year monitoring study of Volatile Hydrocarbons, VHCs, in the atmosphere of Athens. It is the first systematic attempt to determine the VHC levels in the Athens' atmosphere with the very well known photochemical pollution problems. The purpose of this work was to create a database concerning VHCs in order to evaluate the photochemical pollution in this area (ozone creation, case studies and meteorology). Totally, 308 samples were collected at three different sites used in the state-monitoring programme involving the criteria pollutants. Air samples were collected on Tenax TA tubes and analysed by thermal desorption and dual column GC dual FID. Fifteen selected compounds were studied; 6 alkanes and 9 benzenoid compounds. The measured values of individual alkanes ranged from 0.39 pg m(-3) to 33 pg m(-3), and those of aromatics from 0.20 pg m(-3) to 616 pg m(-3). The sum of all 15 VHC concentrations ranged between 16 and 1697 pg m(-3). The time and spatial variations in the concentration of these compounds were assessed. Volatile hydrocarbons exhibited a clear seasonal and time cycle, showing higher concentrations during winter and early morning hours. Study of the spatial variations of VHC levels showed higher concentrations at the center of the city. The variation of toluene/benzene ratio and the correlation between VHCs, criteria pollutants (CO, NOx and O3) and meteorological parameters were also assessed. It was demonstrated that a trip-line of the VHCs concentration at the city center doubles the ozone concentration at peripheral areas under favourable meteorological conditions.  相似文献   

6.
ABSTRACT

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California’s San Joaquin Valley (SJV). Fine particulate matter (PM2.5), coarse particulate matter (PM10), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995–1996.

Day-to-day variations of PM2.5 and PM10 and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites. Under non-rainy conditions, similar diurnal variations of PM2.5 and coarse aerosol were found at the two urban sites, with concentrations peaking during the nighttime hours. Conversely, PM2.5 and coarse aerosol peaked during the morning and afternoon hours at the two non-urban sites. Under rainy and foggy conditions, these diurnal patterns were absent or greatly suppressed.

In the urban areas, elevated concentrations of primary pollutants (e.g., organic and elemental carbons) during the late afternoon and nighttime hours reflected the impact from residential wood combustion and motor vehicle exhaust. During the daytime, these concentrations decreased as the mixed layer deepened. Increases of secondary nitrate and sulfate concentrations were found during the daylight hours as a result of photochemical reactions. At the non-urban sites, the same increases in secondary aerosol concentrations occurred during the daylight hours but with a discernable lag time. Concentrations of the primary pollutants also increased at the non-urban sites during the daytime. These observations are attributed to mixing aloft of primary aerosols and secondary precursor gases in urban areas followed by rapid transport aloft to non-urban areas coupled with photochemical conversion.  相似文献   

7.
An intercomparison study involving eight long-range transport models for sulfur deposition in East Asia has been initiated. The participating models included Eulerian and Lagrangian frameworks, with a wide variety of vertical resolutions and numerical approaches. Results from this study, in which models used common data sets for emissions, meteorology, and dry, wet and chemical conversion rates, are reported and discussed. Model results for sulfur dioxide and sulfate concentrations, wet deposition amounts, for the period January and May 1993, are compared with observed quantities at 18 surface sites in East Asia. At many sites the ensemble of models is found to have high skill in predicting observed quantities. At other sites all models show poor predictive capabilities. Source–receptor relationships estimated by the models are also compared. The models show a high degree of consistency in identifying the main source–receptor relationships, as well as in the relative contributions of wet/dry pathways for removal. But at some locations estimated deposition amounts can vary by a factor or 5. The influence of model structure and parameters on model performance is discussed. The main factors determining the deposition fields are the emissions and underlying meteorological fields. Model structure in terms of vertical resolution is found to be more important than the parameterizations used for chemical conversion and removal, as these processes are highly coupled and often work in compensating directions.  相似文献   

8.
It is widely accepted that the ozone concentrations experienced during photochemical episodes over large areas of Europe may exceed levels at which adverse environmental effects could be expected. These peak ozone concentrations can be reduced by controlling atmospheric emissions of the hydrocarbon and nitrogen oxide precursors. For ozone control to be successful over the spatial scale of Europe, long term international cooperation is required in the formulation of emission abatement strategies. A significant barrier to rapid progress has been the complexity of the processes that describe ozone formation. Highly sophisticated computer models of chemistry and transport have, up to now, been the only means to study the impact of abatement strategies. An alternative approach has been adopted here involving the development of a simplified long range transport model for ozone based on the analysis of over 60 experimental runs of a photochemical trajectory model applied to a wide range of hydrocarbon-nitrogen oxide emission combinations. Using the ozone-precursor relationship obtained, it has been possible to examine various policy options in the European context. Although taken together, three illustrative emission control scenarios reduce NO(x) and hydrocarbon emissions substantially through controls on motor vehicle exhaust, large combustion plant and solvent usage, a significant potential for photochemical ozone formation and long range transport may still remain after their implementation. The extents of precursor emission abatement that will be required, if the potential for ozone formation is to be reduced below published air quality criteria guidelines or critical levels, have been determined for each European country. The implied reductions in NO(x) and hydrocarbons relative to current levels amount to between 50 and 90%.  相似文献   

9.
Typical air quality effect levels of photochemical oxidants on specific plant substrates are illustrated. These include ambient oxidant exposure data measured as “total oxidant” as well as laboratory exposures to individual pure oxidants, ozone, or PAN compounds, since these oxidants are identified in photochemical smog. New terms, “PaNs” and “PAN-type” oxidant, have been proffered for purposes of clarification of the terminology. PAN-type oxidant more precisely defines the phytotoxicant complex causing silvering or bronzing of the lower leaf surfaces in lieu of the older term “oxidant.” Due to the recognition of several oxidizing phytotoxicants in recent years, it is recommended that the term oxidant be reserved for use as a generic term. A tabular classification of the oxidizing phytotoxicants found in community photochemical smog and the specific syndromes produced is provided.  相似文献   

10.
Changes in contaminant levels at monitoring stations do not necessarily represent changes in emission levels, since variations in meteorological parameters determine the transport and diffusion of contaminants between sources and receptors. To estimate annual changes in emission levels, and thus of control program effectiveness, the meteorological stratification of data was employed to provide “comparable days.”

For San Francisco Bay Area photochemical oxidant data, simple criteria based on maximum temperature and on height of inversion base were selected. Temperature provided a readily available integrated index of solar energy input and of ventilation, while the inversion data added a vertical dilution factor.

An earlier study, employing only the temperature criteria, showed that oxidant levels on comparable warm days had nearly doubled from 1954 through 1962. The current study of oxidant data for 1962 through 1969 shows a gradual rise through 1965, and a sharp reversal in 1966, when for the first time a simultaneous decrease was noted at each benchmark station. Data through 1969 show that average oxidant levels have been maintained at this 25% lower plateau, with minor fluctuations at individual stations.

The general improvement in air quality since 1965 is attributed to the reduction of reactive organics emitted from stationary and automotive sources.  相似文献   

11.
This paper summarizes the methodology developed to analyze alternative oxidant control strategies of the 1979 Air Quality Plan for the San Francisco Bay Area. The analysis of alternative oxidant control strategies is a complex task, particularly when a grid-based photochemical model is the primary analysis tool. To handle quantitatively spatial and temporal variations in emissions under both existing and projected future conditions, as well as to simulate the effects of a wide variety of control strategies, a system of computer-based models was assembled. The models projected and distributed a number of variables in space and time: population, employment, housing, land use, transportation, emissions, and air quality. Given time and budget constraints, an approach to maximizing the information return from a limited number of model runs was developed. The system was applied in three sequences to determine (1) what future air quality would be if no further controls were implemented, (2) the degree of hydrocarbon and NOx emission control necessary to attain the oxidant standard, and (3) the effectiveness of alternative stationary source, mobile source, transportation and land use control strategies in contributing to attainment and maintenance of the oxidant standard.

A number of significant modeling assumptions had to be developed in order properly to interpret the modeled results in the context of the oxidant standard. In particular, a Larsen-type analysis was used to relate modeled atmospheric conditions to “worst case” conditions, and a proportional assumption was made to compensate model results for an imperfect validation. The specification of initial and boundary conditions for future year simulations was found to be a problem in need of further research.  相似文献   

12.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

13.
Abstract

In the United States, emission processing models such as Emissions Modeling System-2001 (EMS-2001), Emissions Preprocessor System-Version 2.5 (EPS2.5), and the Sparse Matrix Operator Kernel Emissions (SMOKE) model are currently being used to generate gridded, hourly, speciated emission inputs for urban and regional-scale photochemical models from aggregated pollutant inventories. In this study, two models, EMS-2001 and SMOKE, were applied with their default internal data sets to process a common inventory database for a high ozone (O3) episode over the eastern United States using the Carbon Bond IV (CB4) chemical speciation mechanism. A comparison of the emissions processed by these systems shows differences in all three of the major processing steps performed by the two models (i.e., in temporal allocation, spatial allocation, and chemical speciation). Results from a simulation with a photochemical model using these two sets of emissions indicate differences on the order of ±20 ppb in the predicted 1-hr daily maximum O3 concentrations. It is therefore critical to develop and implement more common and synchronized temporal, spatial, and speciation cross-reference systems such that the processes within each emissions model converge toward reasonably similar results. This would also help to increase confidence in the validity of photochemical grid model results by reducing one aspect of modeling uncertainty.  相似文献   

14.
The current requirements and status of air quality modeling of hazardous pollutants are reviewed. Many applications require the ability to predict the local impacts from industrial sources or large roadways as needed for community health characterization and evaluating environmental justice concerns. Such local-scale modeling assessments can be performed by using Gaussian dispersion models. However, these models have a limited ability to handle chemical transformations. A new generation of Eulerian grid-based models is now capable of comprehensively treating transport and chemical transformations of air toxics. However, they typically have coarse spatial resolution, and their computational requirements increase dramatically with finer spatial resolution. The authors present and discuss possible advanced approaches that can combine the grid-based models with local-scale information.  相似文献   

15.
The relationships between criteria, standards, and control of air pollutants involve complex multidisciplinary interactions. Their over-all impact on the public health and welfare is directly related to the confidence level held by members of government, industry, and universities in the validity of the data upon which these criteria are based. The Environmental Appraisal section of the preliminary draft of the Air Quality Criteria Document “Photochemical Oxidant” prepared by the State of California, Department of Public Health, is reviewed. In general, it is a thoughtful and extensive effort to present the current status of information concerning the physical and chemical aspects of photochemical oxidant. Suggestions as to how it might be extended, revised, or updated are presented along with a brief discussion of two new research areas of possible interest, singlet molecular oxygen as a possible environmental oxidant, and the photochemistry of mixed lead halides in the atmosphere.  相似文献   

16.
We investigated the effects of transboundary pollution between Ontario and New York using both observations and modeling results. Analysis of the spatial scales associated with ozone pollution revealed the regional and international character of this pollutant. A back-trajectory-clustering methodology was used to evaluate the potential for transboundary pollution trading and to identify potential pollution source regions for two sites: CN tower in Toronto and the World Trade Center in New York City. Transboundary pollution transport was evident at both locations. The major pollution source areas for the period examined were the Ohio River Valley and Midwest. Finally, we examined the transboundary impact of emission reductions through photochemical models. We found that emissions from both New York and Ontario were transported across the border and that reductions in predicted O3 levels can be substantial when emissions on both sides of the border are reduced.  相似文献   

17.
We have added the capability to simulate polychlorinated biphenyls (PCBs) and polychlorinated dibenzo [p] dioxins and polychlorinated dibenzo-furans (PCDD/Fs) to the Community Multiscale Air Quality (CMAQ) modeling system, thus taking advantage of the latter's capability to simulate atmospheric advection, diffusion, gas-phase chemistry, cloud/precipitation, and aerosol processes. The modifications reported here include the addition to the CMAQ system of two gas/particle partitioning models options: the Junge–Pankow adsorption model and the KOA absorption model, as well as chemical transformations and atmosphere/water surface exchange processes for these semi-volatile organics. Simulations for the purpose of model testing and validation were conducted for the years 2000 and 2002 on a domain covering most of North America. Both partitioning models give reasonable results when compared with available measurements. The model predictions of deposition and air concentrations also agree well with measurements. The modeling results also indicate that the long-range transport is important and anthropogenic emissions of PCBs and PCDD/Fs are dominant although surface exchange of PCBs may be important for some clean locations.  相似文献   

18.
Health studies have shown premature death is statistically associated with exposure to particulate matter <2.5 μm in diameter (PM2.5). The United States Environmental Protection Agency requires all States with PM2.5 non-attainment counties or with sources contributing to visibility impairment at Class I areas to submit an emissions control plan. These emission control plans will likely focus on reducing emissions of sulfur oxides and nitrogen oxides, which form two of the largest chemical components of PM2.5 in the eastern United States: ammonium sulfate and ammonium nitrate. Emission control strategies are simulated using three-dimensional Eulerian photochemical transport models.A monitor study was established using one urban (Detroit) and nine rural locations in the central and eastern United States to simultaneously measure PM2.5 sulfate ion (SO42−), nitrate ion (NO3), ammonium ion (NH4+), and precursor species sulfur dioxide (SO2), nitric acid (HNO3), and ammonia (NH3). This monitor study provides a unique opportunity to assess how well the modeling system predicts the spatial and temporal variability of important precursor species and co-located PM2.5 ions, which is not well characterized in the central and eastern United States.The modeling system performs well at estimating the PM2.5 species, but does not perform quite as well for the precursor species. Ammonia is under-predicted in the coldest months, nitric acid tends to be over-predicted in the summer months, and sulfur dioxide appears to be systematically over-predicted. Several indicators of PM2.5 ammonium sulfate and ammonium nitrate formation and chemical composition are estimated with the ambient data and photochemical model output. PM2.5 sulfate ion is usually not fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. The model and ambient estimates agree that the ammonia study monitors tend to be nitric acid limited for PM2.5 nitrate formation. Regulatory strategies in this part of the country should focus on reductions in NOX rather than ammonia to control PM2.5 ammonium nitrate.  相似文献   

19.
The relation of ambient levels of hydrocarbons to the products of atmospheric photochemistry has proved to be an elusive problem. Models to account for the photochemical processes are available based on laboratory examination of simulated atmospheres. Likewise, dispersion models are available which, for nonreacting species, can predict air quality given knowledge of emission rates and meteorological variables. However, integration of the dispersion model with the photochemical model is as yet an unsolved problem. In this study an empirical approach was applied in which the only assumption made was that there exists a relationship between early morning average hydrocarbon concentrations and subsequent maximum hourly average oxidant concentrations. A direct examination of all available days in several cities shows that, at any given hydrocarbon level, there exists a limit on the amount of oxidant which can be generated. Specifically it shows that the average 6:00–9:00 A.M. concentration of 0.3 ppm C nonmethane hydrocarbon can be expected to produce a maximum hourly average oxidant concentration of up to 0.1 ppm.  相似文献   

20.
The modelling reconstruction of the processes determining the transport and mixing of ozone and its precursors in complex terrain areas is a challenging task, particularly when local-scale circulations, such as sea breeze, take place. Within this frame, the ESCOMPTE European campaign took place in the vicinity of Marseille (south-east of France) in summer 2001. The main objectives of the field campaign were to document several photochemical episodes, as well as to constitute a detailed database for chemistry transport models intercomparison.CAMx model has been applied on the largest intense observation periods (IOP) (June 21–26, 2001) in order to evaluate the impacts of two state-of-the-art meteorological models, RAMS and MM5, on chemical model outputs. The meteorological models have been used as best as possible in analysis mode, thus allowing to identify the spread arising in pollutant concentrations as an indication of the intrinsic uncertainty associated to the meteorological input.Simulations have been deeply investigated and compared with a considerable subset of observations both at ground level and along vertical profiles. The analysis has shown that both models were able to reproduce the main circulation features of the IOP. The strongest discrepancies are confined to the Planetary Boundary Layer, consisting of a clear tendency to underestimate or overestimate wind speed over the whole domain.The photochemical simulations showed that variability in circulation intensity was crucial mainly for the representation of the ozone peaks and of the shape of ozone plumes at the ground that have been affected in the same way over the whole domain and all along the simulated period. As a consequence, such differences can be thought of as a possible indicator for the uncertainty related to the definition of meteorological fields in a complex terrain area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号