首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The geographical distributions, seasonal variations in numerical abundance and biomass (mg C m-3) of the predators of the holoplankton of the Bristol Channel, between November 1973 and February 1975, are described. The predator numbers and biomass were dominated by the chaetognath Sagitta elegans Verrill. This species represented 96% of the holoplankton carnivore biomass in the outer, seaward region of the Channel and 60% in the inner region; the remainder being ctenophores. The maximum numerical abundance of S. elegans occurred in September at 129 individuals m-3 (18 mg C m-3). Juveniles (<5 mm) reached maximum numbers of 55 individuals m-3 during June, August and September, demonstrating the reproductive activity of the population. The peak numbers were probably the result of the development of two major generations over the 90 d period from mid-June to mid-September. The tentaculate ctenophores were represented by Pleurobrachia pileus (O. F. Müller). The highest abundance was 81 individuals m-3 (3.0 mg C m-3) at a single site in July in the South Central Channel. However, June was the only month when the ctenophores dominated the carnivore biomass in all regions of the Channel; thereafter, S. elegans was more abundant. Reproduction of the ctenophore occurred from April to September, with juveniles reaching maximum abundance in June at 12 individuals m-3. The estimated food demand of the population in May for the outer region of the Channel was approximately 31% of the daily production of copepods. When the population reached its peak abundance in June, the estimated food requirement outstripped the daily production of copepods and a decline in both the prey and predator standing stocks was observed. Similar estimations were derived for the inner region of the Channel. S. elegans increased from a standing stock of 0.038 mg C m-3 in March to 6.35 mg C m-3 in September. Estimates of the copepod production compared with the derived demand of the chaetognath population showed that the decline in the copepods in the late summer was the result of feeding by this predator. The holoplankton carnivore population was approximately 66% of the copepod standing stock for the 10 mo period November 1973 to September 1974 in the outer region of the Channel and 45% of that in the inner region. The carnivores formed the greater part of the total holoplankton biomass from September through the winter months to February, suggesting a predator-dominated community.  相似文献   

2.
A decreasing gradation in the plankton standing stock of the Bristol Channel was observed from the seaward section to the inner, less saline, reaches. Two sub-regions of our survey, the North Outer Channel (NOC) and the Inner Channel (IC), represented the extremes of this gradient and were selected for detailed comparison. The integrated zooplankton biomass, over the 307 d sampling period (4 November 1973 to 6 September 1974), was 2 475 mg C m-3 (266 mg C m-2 d-1) in the NOC and 335 mg C m-3 (20 mg C m-2 d-1) in the IC. The omnivorous plankton accounted for 76% of the standing stock in the NOC and 89% in the IC, of which 58 and 23% were meroplankton and 39 and 71% were holoplankton, respectively; the remainder was unassigned. The majority of the meroplankton in both subregions was decapod larvae and adults, whereas the holoplankton biomass was dominated in the NOC by copepods (89%) and in the IC by mysids (57%), mainly Schistomyzis spiritus. Centropages hamatus was the most abundant copepod species in the NOC and accounted for 32% of the total holoplankton omnivore standing stock. In the NOC and IC, the carnivorous plankton accounted for 24 and 11% of the total plankton biomass, respectively. In the two sub-regions, 20 and 21% of the carnivores were meroplanktonic (primarily larvae of sprats and pilchards), while the holoplankton carnivores contributed 75 and 74% to the NOC and IC, respectively (Sagitta elegans, Pleurobrachia pileus). S. elegans dominated the holoplankton carnivore biomass for the majority of the year and accounted for 96% in the NOC and 60% in the IC. The integrated total particulate carbon over the 307 d period was 200 g C m-3 (6 600 g C m-2) in the NOC and 838 g C m-3 (15 084 g C m-2) in the IC. The annual primary production ranged from 164.9 g C m-2 yr-1 in the Outer Channel (North and South) to 6.8 g C m-2 yr-1 in the IC. The zooplankton biomass reached a maximum in July. The total particulate carbon (TPC) in July was 400 mg C m-3 in the NOC of which ca. 78 mg C m-3 were phytoplankton and ca. 21 mg C m-3 were zooplankton; these values compare favourably with those found in the adjoining Celtic Sea. In the IC, the TPC was 2 800 mg C m-3, of which ca. 107 mg C m-3 were phytoplankton and 2.8 mg C m-3 were zooplankton. From the low primary production estimates for the IC it can be concluded that the majority of the chlorophyll, like the TPC, was allochthonous in origin. Furthermore it is suggested that zooplankton plays a minor role in this estuarine ecosystem and is not the main consumer of the suspended particulate carbon; the benthic filter-feeding communities are presumed to fulfill this role in the Bristol Channel.  相似文献   

3.
The seasonal variations in distribution and abundance of the common zooplankton species in the Bristol Channel and Severn Estuary were related to the salinity regimes observed over the period November 1973 to February 1975. The dominant constituents in all regions were the calanoid copepods, which reached maximum densities in July: approximately 100 times their winter levels. Four zooplankton assemblages were recognised using an objective classification program which computed similarity coefficients and used group-average sorting. The assemblages existed along the salinity gradient observed from the Severn Estuary to the Celtic Sea. The assemblages were classified as true estuarine, estuarine and marine, euryhaline marine and stenohaline marine and were characterized by the copepods Eurytemora affinis (Poppe) (<30S), Acartia bifilosa var. inermis (rose) (27 to 33.5S), Centropages hamatus (Lilljeborg) (31 to 35S) and Calanus helgolandicus (Claus) (>33S), respectively.  相似文献   

4.
Fish were collected by gill nets from the deeper waters of the Entrance Channel, basins and rivers of the large Peel-Harvey estuarine system (south-western Australia) in the wet (June to November) and dry (December to May) periods between August 1979 and July 1981. Simple-regression analysis showed that the number of species, abundance and biomass of fish in the rivers rose with increases in the salinity and temperature of both the surface and bottom of the water column. No such significant correlations were found in the Entrance Channel andbasins (Peel Inlet and Harvey Estuary), where salinity changes were far less marked. The number of species at sites throughout the estuary was inversely correlated with distance from the estuary mouth. Multiple-regression equations showed that, compared with the other environmental variables tested, bottom salinity had a greater influence on the nunber of species and abundance both in the rivers and in the system as a whole. These results indicate that salinity has a greater effect on the fauna in the deeper waters than in the shallows (cf. Loneragan et al., 1986). The larger fish which characterise the deeper waters may thus be less tolerant to low salinities than the smaller fish typically found in the shallows. Both classification and ordination separated the faunal composition of the rivers from those of the Entrance Channel and basins. The fauna of the two narrow and deeper sites in the rivers separated into wet- and dry-period components. Differences between the faunal composition of the riverine regions and those of the Entrance Channel and basins have been related to the much more variable and lower minimum salinities in the rivers. Species characteristic of the rivers included Amniataba caudavittatus, which is estuarine sensu stricto in south-western Australia, the semianadromous Nematalosa vlaminghi and the highly euryhaline Mugil cephalus. The indicator species for the Entrance Channel and basins were all marine species (Cnidoglanis macrocephalus, Hyporhamphus melanochir, Gerres subfasciatus and Pomatomus saltator).  相似文献   

5.
The distribution and abundance of deep-water gorgonian corals were investigated along 52 transects at 183–498 m depth in the Northeast Channel, between Georges Bank and Browns Bank in the northwest Atlantic, using a remotely operated vehicle and a towed video-camera system. Three species (Paragorgia arborea, Primnoa resedaeformis, and Acanthogorgia armata) were observed. Primnoa occurred on 35 transects below 196 m depth, with highest local abundance in stands of 104 colonies per 100 m2. Paragorgia was present on 21 transects deeper than 235 m, with highest local abundance of 49 colonies per 100 m2. Acanthogorgia was observed at only four transects between 231 m and 364 m, with a local maximum abundance of 199 colonies per 100 m2. The maximum abundance averaged for whole transects was 19.2 and 6.2 colonies per 100 m2 for Primnoa and Paragorgia, respectively. The corals were more common in the outer part of the channel along the shelf break and slope than on the shelf in the inner part. All three species showed a patchy distribution with no signs of competitive exclusion at any spatial scale. Transects with high abundance of corals were characterised by depths greater than 400 m, maximum temperatures less than 9.2°C, and a relatively high percentage coverage of cobble and boulder (more than 19% and 6%, respectively). High temperatures probably control the upper depth limit of the corals, and Primnoa seems to tolerate slightly higher temperatures than Paragorgia. Abundance of both species was negatively correlated with average temperature and positively with cobbles. Together, temperature, percentage cobble and salinity accounted for 38% of the variance of Primnoa. The comparable figure for Paragorgia was 15%. The observed distribution indicated that the abundance of coral is controlled by additional factors such as larger-scaled topographic features governing the current regimes and thus also the supply of food and larvae.Communicated by R. J. Thompson, St. Johns  相似文献   

6.
Benthic and pelagic fishes were sampled east of Maria Island, Tasmania, at two-monthly intervals from April 1984 to June 1985, from the surface to the bottom (500 m depth), using commercial-sized trawls. Biomass was calculated by the area swept/volume filtered method and divided by estimated catchability coefficients so that catches from the two sampling gears could be combined. Of the 54 families caught, three (Myctophidae, Squalidae, Sternoptychidae) contributed 25% of the 115 species. Most benthic and dispersed species were caught regularly, whereas most pelagic species occurred only occasionally and in low numbers, although a core group was always present. Total fish biomass was high (range=77 to 532 g m-2; x= 390 g m-2), due almost entirely to the myctophid Lampanyctodes hectoris (over 90% of the biomass). Benthic biomass was relatively low and stable, but derived from many species. Pelagic biomass was high, fluctuated widely and was composed of a few species. Biomass was highest in summer: Maurolicus muelleri increased by a factor of 200, Diaphus danae by 50, and L. hectoris, Macruronus novaezelandiae and Lepidorhynchus denticulatus by almost 10. Peaks in biomass may correlate with the interactions of the subtropical convergence and the East Australian Current and the resultant marked seasonal cycle in water temperature, nutrients and primary productivity.With an appendix by T.J. Kenchington, CSIRO Division of Fisheries, Hobart, Tasmania 7001, Australia  相似文献   

7.
The standing crop of seaweeds was estimated monthly over a 22 mo period from 1971 to 1973 on a reef at Waikiki, Honolulu, Hawaii. Wet and dry standing crops averaged 1.2 and 0.26 kg m–2, respectively. Approximately 70% of the total biomass was contributed by a single species,Sargassum polyphyllum, and the remainder was contributed by 29 other species. The size of the total standing crop and ofS. polyphyllum in particular was highly correlated with antecedent water temperatures. The highest correlation was with temperatures recorded 3 to 4 wk prior to the estimate of standing crop. Approximately 65% of the variability of the standing crop on the reef was explained by this single variable. Multiple linear-regression analyses did not uncover further significant environmental factors related to theS. polyphyllum standing crop. Temperature may have acted by stimulating the vegetative growth of new plants between the period of minimal abundance in February and maximal abundance in October. The population decline after November relates to the switch to reproductive growth. Total productivity on the reef was estimated to be 16 800 to 19 314 kg dry wt ha–1 yr–1, based on the average size of the standing crop and estimates of removal rate and turnover time, respectively.  相似文献   

8.
D. Liang  S. Uye  T. Onbé 《Marine Biology》1996,124(4):527-536
Population dynamics and production of the calanoid copepod Centropages abdominalis were studied from November 1986 to November 1987 in Fukuyama Harbor, in the central part of the Inland Sea of Japan. This species was present in the plankton during a cold-water period from November to June (temperature range: 8.9 to 21.1 °C), with a peak abundance (23 600 ind m–3) in February. During this period, six generations could be detected, and each generation time agreed well with that predicted from food-satiated laboratory experiments, indicating that the natural population was not food-limited. The population suffered extremely high mortality during the period from egg to naupliar stage (N) II: only 0.02 to 4% of the eggs survived to NII. However, the mortality in stages older than NII was almost negligible. The growth rate of C. abdominalis increased exponentially with increasing temperature. Its biomass and production rate showed marked seasonal variations largely in parallel with numerical abundance. The estimated production between 7 November 1986 and 29 May 1987 was 355 mg C m–3 or 2.66 g C m–2, 95% of which occurred during February and March. The daily production rate to biomass ratio increased exponentially with temperature from 0.18 at 8.9°C to 0.37 at 19°C.  相似文献   

9.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

10.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

11.
G. Döhler 《Marine Biology》1984,83(3):247-253
The marine diatoms Lauderia annulata Cleve and Thalassiosira rotula Meunier were grown at different salinities (20, 35 and 45) and exposed to different levels of midultraviolet, UV-B) 439, 717 and 1230 J m-2 d-1, weighted) for 2 d. A low UV-B dose (439 J m-2 d-1) usually caused a slight increase in biomass production (dry weight) compared to non-UV-B irradiated cells. Enhanced UV-B radiation (717 J m-2 d-1) depressed protein and pigment content (chlorophyll a, chlorophyll c 1+c2 and carotenoids), especially in algae grown at 20 or 35 salt concentration of the nutrient solution. The effect of UV-B radiation (717 J m-2 d-1) on the pattern and concentration of amino acids was species-dependent. Aspartic acid was reduced in all tested diatoms. A drastic increase in glutamine and a reduction in glutamic acid pools could be observed in L. annulata samples, but no significant variation of the impact of UV-B was found in dependence on the salt concentration of the nutrient medium. T. rotula cells grown at 35 S showed an increase of glutamic acid and a decrease of glutamine levels after UV-B radiation. The results are discussed in relation to the impact of UV-B upon carbon and nitrogen metabolism.  相似文献   

12.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

13.
From July 1978 to March 1980, a study was made on the distribution, population dynamics and secondary production of Nephtys hombergii Audouin et Edw. occurring in the sublittoral industrialised region of Southampton Water in south England. The distribution of the worm was related to the silt content and copper level of the sediment, the greatest densities of N. hombergii being found in sediment containing 60 to 100% silt. Breeding occurred at a low level throughout the year, with a maximum in July to September and November to January in the second year of growth. Spawning occurred when the oocytes measured 200m in diameter, and unshed gametes were resorbed. Annual production varied between 0.092 and 4.32 g C m-2 yr-1 (ash-free dry weight) and amounted to 1.9–39.4% of the total macrofaunal production at the sampling stations. The production:biomass (P:B) ratio of the species varied between 1.6 and 2.9.  相似文献   

14.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

15.
At a locality at 32-m depth in Oslofjord, Norway, temperature varied from 4.8° to 9.2°C and salinity varied from 31.2 to 33.3 S over a two-year period. There was a peak in chlorophyll a, and C and N in April–June and a smaller peak in November in the sediment. Bacterial numbers showed maxima in July–August and November–December. The macrobenthic fauna was typical of a species-rich and undisturbed boreal community of silt-clay sediments. The community was predominantly composed of surface and subsurface deposit feeders. Over the twoyear period there was little variation in numerical abundance or biomass of the species despite the variation in food input. The lack of seasonality shown by the fauna probably relates to the lack of variability of the physical environment. The mechanism by which this control is achieved, however, is not known. There are large predators/disturbers in the community such as the polychaetes Lumbrineris fragilis, Glycera rouxii, G. alba, Nephthys spp. and the echinoid Brissopsis lyrifera, which probably play an important role in structuring the community.  相似文献   

16.
D. W. Engel 《Marine Biology》1977,41(3):275-279
An investigation of the osmoregulatory capabilities of two portunid crabs, Callinectes sapidus and C. similis, was conducted to determine if their differences in distributional patterns were reflected in their capacity to adjust physiologically to changes in salinity. After acclimation to 5, 20 and 35 S, measurements of hemolymph and muscle concentrations of Na+, Cl- and K+ and muscle-free amino acids indicated that C. sapidus is a better osmoregulator at low salinity than C. similis, while both species osmoregulate equally well at high salinity. This difference in osmoregulatory capacity corresponds well with their distribution in coastal-plain estuaries.This research was supported under agreement (49-7)-5 between the National Marine Fisheries Service and the Energy Research and Development Administration.Communicated by M.R. Tripp, Newark  相似文献   

17.
D. Liang  S. Uye 《Marine Biology》1996,127(2):219-227
Population dynamics and production of the calanoid copepodParacalanus sp. were studied from November 1986 to November 1987 in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan. This species was perennial, with a large abundance peak in June/July and small peaks in September/October and November/December. During a year of investigation, 15 generations Gould be detected. For each generation, the mean population egg production rate and the mean daily midstage abundance front NIII to CV were determined to obtain a survival curve from egg to CV. The mortality was extremely high during the early life stages: on average only 7.1% of the eggs produced might survive into NIII. This high mortality might be caused by predation by sympatric omnivorous copepods, in addition to sinking loss of eggs from the waten column. The biomass ofParacalanus sp. showed marked seasonal variations largely in parallel with numerical abundance. The instantaneous growth rate of each developmental stage increased exponentially with temperature up to 20 °C, above which the rate was constant. The annual integrated production rate was 734 mg C m–3 yr–1 or 5.5 g C m–2 yr–1.  相似文献   

18.
Samples of fish were collected by beach seine throughout the shallow waters of the large Peel-Harvey estuarine system (south-western Australia) in the wet (June to November) and dry periods (December to May) between August 1979 and July 1981. The number of species, density and biomass declined with distance from the estuary mouth and rose with increasing temperature and salinity. Both classification and ordination distinguished the faunal composition of the saline reaches of the rivers from that of the narrow Entrance Channel and two large basins (Peel Inlet and Harvey Estuary). Classification also separated the fauna of the riverine group into wet- and dry-period components, and divided samples taken in the Entrance Channel from those in the basins. Differences between the faunal composition of the Peel Inlet and its tributary rivers were related to differences in salinity regime. The riverine fauna was subjected to much more variable and lower minimum salinities. Species characteristic of the rivers included teleosts such as Atherinosoma wallacei and Amniataba caudavittatus, which are estuarine sensu stricto in southwestern Australia, the semi-anadromous Nematalosa vlaminghi and juveniles of the marine Mugil cephalus. The species diagnostic of the wet periods in the rivers were the estuarine species A. wallacei and Favonigobius suppositus, while the dry periods were characterised by the marine species Atherinomorus ogilbyi and Sillago schomburgkii. Marine species also characterised the Entrance Channel (Favonigobius lateralis, Sillago bassensis), whereas the indicators in Peel Inlet and Harvey Estuary were Hyporhamphus regularis and Apogon rueppellii, both of which can pass through the whole of their life cycle in estuarine as well as marine environments.  相似文献   

19.
The rate of the primary production of the phytoplankton community in the Petalion Gulf, Aegean Sea, was studied from January 1970 to May 1971, at a station situated at approximately Latitude 37°54N; Longitude 24°11E. A variety of physical and chemical parameters such as chlorophyll, primary nutrients (N,P,Si), temperature, salinity, oxygen and light penetration were also studied simultaneously. The rate of the gross primary production varied from 40 to 200 mg C m-2 day-1, with a mean value of 90 mg C m-2 day-1. The annual gross primary production was calculated to be 33 g C m-2, which is the minimum known value in the Aegean and Mediterranean Seas. Maximum production was found at the depth of 20 m on the average, mainly due to high light intensities. Petalion Gulf supports a small photosynthetic biomass, as indicated by the low seasonal values of chlorophyll a (0.01 to 0.18 mg m-2), the highest values being found in the summer. The low production rate noted may have been due to the low nutrient concentrations found: N, 0.04 to 0.32 g-at/1; P, 0.00 to 0.15 g-at/1; Si, 0.45 to 2.25 g-at/1. It is suggested that inorganic phosphorus and nitrogen may alternate in limiting primary production rates in these oligotrophic waters. The temperate waters of the Petalion Gulf are stratified in summer (15.5° to 24.7°C) and well-mixed in winter (12.9° to 15.0°C); they are oxygen-saturated throughout the year, and of high transparency, with 86 m depth for the euphotic zone on the average yearly. The Petalion Gulf is therefore characterized as a typical oligotrophic biome in the Aegean and Eastern Mediterranean Seas.  相似文献   

20.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号