首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Clemmesen 《Marine Biology》1994,118(3):377-382
RNA/DNA ratios in individual herring (Clupea harengus) larvae (collected from Kiel Bay, Baltic Sea, in 1989) were measured and proved suitable for determining nutritional status. Significant differences between fed and starving larvae appeared after 3 to 4 d of food deprivation in larvae older than 10 d after hatching. The RNA/DNA ratio showed an increase with age or length of the larvae and was less pronounced in starving larvae compared to fed larvae. The individual variability of RNA/DNA ratios in relation to larval length of fed larvae and of larvae deprived of food for intervals of 6 to 9 d is presented. Based on the length dependency and the individual variability found within the RNA/DNA ratios, a laboratory calibration is given to determine whether a larva caught in the field has been starving or not. An example for a field application is shown.  相似文献   

2.
E. J. H. Head 《Marine Biology》1992,112(4):583-592
The results presented here were obtained at six locations during three cruises in 1985 (off the coast of Labrador), 1986 (at the eastern end of Viscount Melbourne Sound) and 1988 (off the coast of Labrador). In situ chlorophyll maximum concentrations were >7 gl-1 at depths of between 0 and 30 m in all sampling areas. In feeding experiments copepods attained higher gut pigment concentrations the longer they had been previously starved and higher concentrations when fed in the dark than when fed in the light. Community ingestion rates calculated from changes in particulate chlorophyll were higher than estimates derived from gut pigment data except when copepods had been starved for 24 h. Differences between estimates by the two methods suggested pigment destruction. In feeding experiments pigment: biogenic silica ratios in food and faecal pellets suggested that the length of starvation period affected the degree of pigment destruction differently at different stations and that feeding in the light greatly increased pigment destruction. A comparison of pigment: silica ratios in the water column, and in faecal pellets collected from copepods which had fed there, suggested that pigment destruction may occur in situ sometimes and that the degree to which it occurs may be affected by feeding history, light, diel feeding behaviour and species composition.  相似文献   

3.
Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.  相似文献   

4.
A method to directly measure predation rates by older stage copepods upon copepod nauplii using species-specific primers for the mitochondrial cytochrome oxidase subunit one gene (mtCOI) and real-time quantitative PCR (qPCR) was developed. The general approach is to determine the mtCOI gene copy number of an individual prey organism and the copy number of the same gene in the stomachs of predatory copepods collected in the field. From the knowledge of DNA disappearance rates in the stomachs, ingestion rates can be calculated. In October 2006, laboratory experiments were carried out with Acartia tonsa N1 and N2 as prey and adult female Centropages typicus as predator. The copepods were collected in Narragansett Bay, USA. A. tonsa mtCOI copy numbers copepod−1 were determined for stages N1–C1 and for adults. A. tonsa DNA was detectable in the guts of the predators for as long as 3 h. Exponential rates of decline in prey DNA from the stomachs of the predators are similar to those measured for gut pigments. Because of the very small amount of DNA in an individual N1 or N2 nauplius, procedures were developed to maximize the quantitative extraction and recovery of DNA and to increase the sensitivity of the method. Two quite divergent haplotypes of A. tonsa were found in Narragansett Bay, which required separate qPCR primers; one was present in summer (July) and the other in fall and winter (October and February). With modification, the methods in this study can likely be applied to a range of predator–prey systems.  相似文献   

5.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
The fate of the protease trypsin in intestines of individual herring larvae Clupea harengus L. was studied following digestion of the copepod Acartia tonsa. Trypsin was retained in the intestine during two consecutive pulses of feeding and defaecation of copepods. Quantification of herring trypsin in digested, defaecated copepods showed that ca. 1% of larval intestinal enzyme was defaecated along with 1 to 3 copepods. Following ingestion of a single meal, the level of intestinal trypsin post-ingestion declined to pre-ingestion levels within 1 to 2 d of starvation. All enzyme data thus indicated that trypsin, released in response to ingestion of a meal, was retained. In addition, analysis of fed subgroups of starved larvae clearly indicated that release of trypsin from the pancreas stopped after 6 to 8 d of starvation. As the fish still contained substantial amounts of trypsinogen, the underlying cause might be defective release mechanisms. Daily secretion of trypsin and processes responsible for enzyme retention in the gut are discussed. Assimilation efficiency in herring larvae was estimated for copepodite prey. Average carbon assimilation was 90%.  相似文献   

7.
RNA:DNA ratios of larval and juvenile red drum (Sciaenops ocellatus) collected from nursery habitats in the Aransas Estuary, Texas, in 1994 were quantified using a highly sensitive ethidium-bromide fluorometric technique. RNA:DNA ratios of wild red drum were evaluated by comparing individual values to a linear regression model derived for starved laboratory-reared red drum. Wild red drum were in relatively good condition with <5% of the RNA:DNA ratios within or below the 95% prediction interval of 4 to 5 d starved red drum. A multiple-regression model explained 54% of the variability in the RNA:DNA ratio of wild red drum, and identified length and water temperature (midday) as significant factors. RNA:DNA ratios increased with fish length [≃1.1 mm−1, over the size range investigated (5␣to 20 mm)]. The effect of temperature on the RNA: DNA ratio was assessed on different sampling trips, and ratios increased with increasing temperature. Abundance of larval and juvenile red drum in the Aransas Estuary varied as a function of both habitat (shoal grass Halodule wrightii, turtle grass Thalassia testudinum) and site (Aransas Bay, Redfish Bay); however, no differences in RNA:DNA ratios were detected between habitats or between sites. It is postulated that the nutritional condition of newly settled red drum from the Aransas Estuary in 1994 was relatively high, and that starvation was of minor importance. Received: 19 August 1996 / Accepted: 23 August 1996  相似文献   

8.
Levels of total RNA, total DNA, 18S ribosomal RNA (rRNA), poly(A) messenger RNA (mRNA), and two mRNAs coding for abundant myofibrillar proteins were estimated in laboratory-reared Atlantic cod larvae (Gadusmorhua Linnaeus) under conditions of feeding and starvation. DNA probes specific for cod 18S rRNA, β-actin mRNA and myosin heavy chain mRNA were developed. In two experiments on newly hatched larvae in fed and starved treatments, changes in 18S rRNA and mRNA were similar to changes in total RNA during the first weeks after hatching. RNA levels in fed and starved larvae in both experiments were stable, or increased, over the first 3 d after hatching, and then decreased to minima at 9 d. RNA levels increased after 9 d, with the degree and timing of the increase varying among the individual classes of RNA. Complete mortality of starved larvae in both experiments was observed shortly after 11 d, corresponding to exhaustion of endogenous yolk reserves. Total RNA content, RNA/DNA ratio, 18S rRNA levels, total mRNA pool, and actin and myosin heavy chain mRNA levels showed significant differences in fed and starved first-feeding larvae after yolk exhaustion. In another experiment with 3- to 4-week-old cod larvae, 18S rRNA levels were significantly lower in starved versus fed larvae after 3 d. Total RNA responded to feeding and starvation within a similar time as 18S rRNA and the mRNAs examined. Analysis of bulk nucleic acids using fluorometric dyes was simpler and faster than analysis of individual RNAs using hybridization probes, and provides valuable information on recent growth and condition of individual larvae. However, analysis of specific RNAs can provide information on expression of the corresponding genes and reveal the changes underlying trends seen in bulk RNA. Received: 9 February 1996 / Accepted: 7 June 1999  相似文献   

9.
Postlarval lobsters Homarus americanus Milne Edwards hatched from three females collected in 1989 from Block Island Sound, Rhode Island were reared individually in the laboratory under nine treatment combinations of temperature (15, 18 and 21°C) and feeding (starved, low ration and full ration). Total RNA, DNA (mgind.-1), RNA:DNA ratios and molt stage were determined for individuals sampled at daily intervals. Postlarval lobsters had high resistance to starvation. A majority of the lobsters survive 12 d of food deprivation, with some surviving up to 24–29 d. During starvation, cell biomass (estimated from protein:DNA) decreased to a minumum size, whereas cell number (based on total DNA) was generally conserved. The molt cycle was arrested at molt stage C in the starved postalrvae. Instar duration was inversely related to temperature. However, the duration of the postlarval instar did not differ between the low and full ration treatments. Uncoupling of cell growth and the molt cycle was evident in the full and low ration treatments. In the full ration treatments, the postmolt through early premolt was characterized by a rapid increase in total RNA and DNA. Maximum cell biomass was attained by molt stage C or D0. In the low ration treatments, total RNA and DNA were less than those in the full ration treatments and the maximum cell biomass was attained only at molt stage D2-3. Notably, different feeding regimes resulted in different patterns in RNA:DNA ratios over the molt cycle during the postlarval instar. RNA:DNA ratio was a sensitive indicator of recent (2 to 3 d) food deprivation. However, this ratio was positively related to the level of feeding only at molt stages C to D1 and was inversely related to temperature regime. These results indicate that the use of RNA:DNA ratios to estimate the relative nutritional state of postlarval tobsters must be qualified with respect to the period of the molt cycle and the temperature regime.  相似文献   

10.
Measurements of respiration and excretion at 25°C were made for five species of ctenophores collected during five cruises to the Bahamas (1982–1984). The mean element-specific respiration and ammonium excretion rates of freshly collected specimens of all species ranged from 4 to 16% d-1, the mean atomic O:N ratios were 10 to 16, and ammonium averaged 60 to 90% of the total dissolved nitrogen excreted. For adult ctenophores, the carbon content ranged from 0.6% carbon (as percent of dry weight) for Bolinopsis vitrea to 3.7% carbon for Beroë ovata. There was a marked increase in the organic content (% carbon of dry weight) of small Bolinopsis vitrea with tentacles compared to fully lobate adults. B. vitrea had increasingly higher metabolic rates when held at food concentrations up to 100 copepods 1-1 (about 250 g C 1-1). The overall range between starved and well-fed B. vitrea was about two times for respiration and a factor of three for ammonium excretion. B. vitrea decreased from well-fed to a starved metabolic rate in about a day after removal from food. The metabolic rate of Eurhamphaea vexilligera was not measurably affected by short-term starvation or feeding (maximum 25 copepods 1-1). In feeding experiments, E. vexilligera of 20 to 56 mm length fed at rates equivalent to clearance rates of 250 to 1 800 ml h-1.  相似文献   

11.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

12.
White  J. R.  Dagg  M. J. 《Marine Biology》1989,102(3):315-319
The estuarine copepod Acartia tonsa was collected on several occasions between 4 April and 14 August 1985 from Terrebonne Bay, Louisiana (29°08N; 90°36W) and the effects in its diet of suspended sediments, collected from the same area, were measured at five different concentrations of sediment (100 to 1 000 ppm) and six phytoplankton concentrations (500 to 13 000 cells ml-1 Thalassiosira weissflogii). Egg production rate was used as an index of diet quality. At low phytoplankton concentrations (500 cells ml-1), and at intermediate phytoplankton concentrations (2 000 cells ml-1) for previously starved copepods, egg production was reduced by up to 40% at a sediment concentration of 250 ppm and further reduced at higher sediment concentrations. At higher food concentrations (4 000 to 13 000 cells ml-1), suspended sediment had no effect on egg production rates at sediment concentrations up to 500 ppm. Rates were reduced only at the highest sediment concentration of 1 000 ppm. Under most natural conditions, suspended sediment would not significantly affect egg production rates in A. tonsa.  相似文献   

13.
Postlarval shrimp, Penaeus vannamei Boone, 1931, were held individually in cages and exposed to two feeding regimes. One group was starved for 12 d and then fed during the following 12 d. A second group was fed throughout the 24 d study. Four individuals were sampled from each of the two groups on Days 0, 1, 2, 4, 8, 12, 13, 14, 16, 20, and 24. Molting and growth among the starved-fed postlarvae stopped after 2 d starvation, while fed postlarvae increased significantly in size throughout the 24 d study. Among the starved-fed postlarvae, water content increased rapidly in response to starvation. DNA and sterol concentrations increased significantly during starvation due to selective catabolism of cellular components. After 12 d, RNA concentration was not significantly different between the fed and starved-fed postlarvae, but became significantly higher in the starved-fed postlarvae 48 h after feeding resumed. Triacylglycerol reserves were severely depleted during the first day of starvation, while protein concentrations began to decrease after the second day of starvation. RNA, protein, and the polyamines spermidine and spermine, when expressed as a ratio to DNA, decreased in response to starvation. Concentrations of all measured parameters in the starved-fed postlarvae returned to levels similar to those in the fed group 8 to 12 d after feeding resumed. Results of this study suggest that triacylglycerol provides energy during short periods of starvation, while protein is utilized during prolonged starvation. The ratios of RNA:DNA, protein:DNA, spermidine:DNA, spermine:DNA, two unidentified amine compounds, and percent water content are all useful indicators of prolonged nutritional stress in postlarval P. vannamei.  相似文献   

14.
Two important issues in the studies of harmful algae include ecological role of the toxic compounds and their fate through the food web. The aims of this study were to determine whether the production of domoic acid is a strategy evolved to avoid predation and the role of copepods in the fate of this toxic compound through the food web. The copepod Acartia clausi was fed with single and mixed cultures of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia delicatissima. Ingestion rate as a function of diatom abundance was the same for the toxic and non-toxic Pseudo-nitzschia species, indicating no selective feeding behaviour against P. multiseries. The toxins ingested by the copepods did not affect mortality, feeding behaviour, egg production and egg hatching of the copepods. Copepods assimilated the 4.8% of the total domoic acid ingested. Although the amount of toxins daily detoxificated by the copepods was 63.6%, the copepods accumulated domoic acid in their tissues. We conclude that domoic acid is not toxic for copepods and, probably for this reason, this toxin does not act as feeding deterrent for copepods. However, even though the production of domoic acid has apparently not evolved to deter predation, copepods may play an important role on the fate of this toxic compound through the marine food web.  相似文献   

15.
The effect of the chemical composition of food on the reproductive success of the copepods Acartia tonsa Dana and A. hudsonica Pinhey was studied in the laboratory. Laboratory-reared individuals were fed one of three monoalgal diets at different stages of growth: the diatom Thalassiosira weissflogii, the flagellate Rhodomonas lens and the dinoflagellte Prorocentrum minimum. The diet was analyzed for carbon, nitrogen, protein, carbohydrate and fatty acid content. Reproductive success was measured as eggs female-1 day-1 (E r) and as the hatching success of the eggs. The E r of Acartia spp. was correlated with protein and specific fatty acids [16:17 (negative), 20:53, 22:63, and 18:0 (positive)] and, especially, the fatty acid composition of the algae expressed as the 3:6 and 20:22 fatty acid ratios. The youngest diatom cultures and exponentially-growing flagellates displayed the highest E r; the lowest E r was recorded for females fed the senescent diatom cultures. The development time of eggs was affected by the age of the phytoplankton culture fed to the female. Hatching success of eggs decreased with the age of the algal culture, but no correlation was found with the meansured chemical components of the food.  相似文献   

16.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

17.
Acartia tonsa Dana is thought to have invaded summer-warm estuarine headwaters north of Cape Cod, USA in modern times. However, these northern populations are relict ones, derived from a distribution which was once continuous from Cape Cod to the Northumberland Strait. The conclusion is based on: (1) the presence of other relict warm-water faunal elements; (2) the reproductive ecology of A. tonsa; (3) present and post-glacial oceanographic conditions. A. tonsa is not a relict holoplankter. Because of its dormant winter eggs, the species is analogous to a meroplanktonic species having high fecundity and a long pelagic larval stage. The disjunction of A. tonsa in its present refuges may make it useful for studies on rates of speciation in marine calanoid copepods.Ira C. Darling Center Contribution No. 153  相似文献   

18.
Spatial and temporal variability in zooplankton was studied at eight stations located in the Lesina Lagoon (South Adriatic Sea) Salinity, temperature, dissolved oxygen and chlorophyll a (in the lagoon) at these stations were also assessed. The zooplankton community was characterised by clear seasonal oscillations and mostly represented by copepods and their larvae. The dominant copepod species were Calanipeda aquaedulcis and Acartia tonsa, which exhibited spatial–temporal segregation in the lagoon. C. aquaedulcis copepodites seemed to be better adapted to oligotrophic and oligohaline conditions compared with the A. tonsa population. The invasive species A. tonsa has completely replaced the formerly abundant Acartia margalefi. A positive correlation was found between abundances, total species numbers and trophic state. An increasing abundance trend was shown from the lagoon towards the sea. The highest diversity indices were recorded at the two channel inlets, during high tide due to the absence of a clear dominance of one or more coastal species and the co-occurrence of species of lagoon and marine origin.  相似文献   

19.
H. Ishii 《Marine Biology》1990,105(1):91-98
In situ diel variations in gut pigment contents of neritic (Acartia omorii andPseudocalanus minutus) and oceanic copepods (Calanus plumchrus andC. cristatus) were analyzed.A. omorii andP. minutus were sampled in Onagawa Bay on the east coast of Japan in May and August 1987, andC. plumchrus andC. cristatus were sampled in the Bering Sea in June 1986. Gut pigments were generally high at night, and bimodal feeding rhythms were observed in all species. The first peak of gut pigments occurred between sunset and midnight and was followed by a midnight decrease in gut pigment levels, resulting in eventual evacuation of the gut. The second peak was observed a few hours after sunrise. Incubation experiments indicated that ingestion rates of starved copepods were higher than those of acclimated copepods. This phenomenon was most notable at high food concentrations. Gut pigments of starved copepods rapidly increased after exposure to high concentrations of culturedThalassiosira decipiens. These findings suggest that in situ feeding behavior of herbivorous copepods includes periods of cessation or reduction in feeding during the night, and consequently, feeding activity is periodically enhanced with starvation. Starvation enhanced feeding behavior is most obvious in the large oceanic species,C. plumchrus andC. cristatus and is not distinct in small coastal species such asA. omorii.  相似文献   

20.
Effects of colony food shortage on behavioral development in honey bees   总被引:1,自引:0,他引:1  
Three experiments were conducted to explore the effects of severe food shortage on the control of two important and interrelated aspects of temporal division of labor in colonies of the honey bee (Apis mellifera): the size and age distribution of a colony's foraging force. The experiments were conducted with single-cohort colonies, composed entirely of young bees, allowing us to quickly distinguish the development of new (precocious) foragers from increases in activity of bees already competent to forage. In experiment 1, colony food shortage caused an acceleration of behavioral development; a significantly greater proportion of bees from starved colonies than from fed colonies became precocious foragers, and at significantly younger ages. Temporal aspects of this starvation effect were further explored in experiment 2 by feeding colonies that we initially starved, and starving colonies that we initially fed. There was a significant decrease in the number of new foragers in starved colonies that were fed, detected 1 day after feeding. There also was a significant increase in the number of new foragers in fed colonies that were starved, but only after a 2-day lag. These results suggest that colony nutritional status does affect long-term behavioral development, rather than only modulate the activity of bees already competent to forage. In experiment 3, we uncoupled the nutritional status of a colony from that of the individual colony members. The behavior of fed individuals in starved colonies was indistinguishable from that of bees in fed colonies, but significantly different from that of bees in starved colonies, in terms of both the number and age distribution of foragers. These results demonstrate that effects of starvation on temporal polyethism are not mediated by the most obvious possible worker-nest interaction: a direct interaction with colony food stores. This is consistent with previous findings suggesting the importance of worker-worker interactions in the regulation of temporal polyethism in honey bees as well as other social insects. Received: 17 April 1997 / Accepted after revision: 26 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号