首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important greenhouse gases (GHGs). The objective of this study is to quantify the aggregate GHG (CH4, N2O and CO2) emissions and estimate economic losses of three ecosystems (marsh, paddy field and upland) in the Sanjiang Plain, excluding the Muling-Xiangkai Plain, south of Wanda Mountain. The results indicate the economic losses from GHG emissions of marshes were from 6.40 to 7.75?×?10CNY (Chinese Yuan), those of paddy fields were from 1.41 to 3.20?×?10CNY; and from uplands were from 0.26 to 0.49?×?10CNY. Using linear trend analysis, the economic losses through GHG emissions of marshes fell between 1982 and 2005, but those from paddy fields and uplands increased. In our study, the sequence in magnitude of the economic losses from GHG emissions was: marshes > paddy fields > uplands. In fact, the economic value of GHG emissions was negative because of these adverse impacts on the environment. This article could provide a reference for calculation of GHG exchange. The results suggest that improvement of fertiliser use efficiency for more precise agricultural management and returning straw to cropland could mitigate GHG emissions and would help to achieve sustainable development.  相似文献   

2.
The aim of this paper is to study the spatialtemporal differentiation of industrial eco-efficiency in China. Using methods based on the data envelopment analysis (DEA) model and exploratory spatial data analysis (ESDA) and data from 1985, 1995, 2005, and 2008 of 30 provinces in China, the spatial-temporal pattern changes in industrial eco-efficiency are discussed. The results show that: first, the patterns of industrial eco-efficiency are dominated by clustering of relatively low efficiency provinces; second, spatial relationships between the industrial eco-efficiencies of different provinces changed slightly throughout the period and the provinces persistently exhibit spatial concentration of relatively low industrial eco-efficiency; finally, there is an obvious trend in the polarization of industrial eco-efficiency, i.e., the higher level spatial units are concentrated in eastern China, and the lower level spatial units are mainly in western and central China.  相似文献   

3.

Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and commercial future by constructing cost-effective routes to a circular economy.

  相似文献   

4.
Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite). The advantage of gaseous energy carriers with the lowest levels of GHG emissions compared to other fossil fuels still remains. This holds true for fossil natural gas alone as well as for the expected future blend with bio-methane.  相似文献   

5.
借鉴世界企业永续发展委员会(WBCSD)提出的生态效益指标体系,结合社会价值因子构建了中国工业部门生态效益指标体系,利用因子分析模型研究了中国2006年工业部门生态效益及其主要影响因子,并按照工业生态效益特征将39个工业部门划分为4个类型。结果表明:中国工业部门生态效益的影响因素可以归纳为能源消耗-污染因子、水资源消耗-污染因子、经济社会效益因子 中国工业部门生态效益差异显著,机械设备制造业、电子属于生态效益最优的工业部门,以矿产品采掘与加工为基础的工业部门整体表现出高能耗、高污染、低效益,造纸及纸制品业生态效益最差。因子分析法较全面的反映了中国工业部门的生态效益,提高工业部门生态效益的建议可为中国工业的可持续发展提供决策依据。  相似文献   

6.
Treibhausgas-Emissionen zukünftiger Erdgas-Bereitstellung für Deutschland   总被引:1,自引:1,他引:0  

Background

Natural gas makes a significant contribution to the current energy supply and its importance, in relation to both the German and worldwide energy supplies, will increase further in decades to come. In addition to its high degree of efficiency, the low level of direct GHG combustion emissions is also an advantageous factor. However, around 90% of natural gas is methane (CH4), which is the second most significant GHG due to its high greenhouse potential (21 times higher than CO2). Therefore, high levels of direct gas losses of natural gas in its production, processing, transport and distribution could neutralise its low emission advantages. This is particularly apparent when considering the growing distances between production and use, the demanding production processes and the upcoming worldwide market for LNG (liquefied natural gas).

Aim

This paper aims to analyse and illustrate the future GHG emissions of the whole process chain of natural gas (indirect emissions) to be supplied to the German border over the next 2 decades. This should allow the comparison of total GHG emissions (indirect and direct) of natural gas with the GHG emissions of other fossil fuels. By considering likely changes in gas origin as well as dynamic changes in the infrastructure and technology of gas production, processing and transport until 2030, all relevant factors are included. The study focuses on the emissions of Russian natural gas as Russia is already, and will be in the future, the most important gas supplier to the German and European gas markets.

Results and Discussion

The analysis illustrates a significant change in the gas supply over the next two decades. The EU Gas Fields are in decline and it is predicted that these will run dry. In parallel the share of Russian and Norwegian natural gas, and also the levels of LNG production (e.g. from Algeria or Egypt), will increase. Although the potential for GHG emissions tends to grow as a result of greater transport distances and demanding production and processing activities, high investment in necessary mitigation options (e.g. through replacing older and inefficient technology; updating to state-of-the-art technology) may neutralise the increase. The overall result of these counteracting trends will be to decrease GHG emissions, in a range of around 12% per TJ of direct emissions of natural gas, depending on the level of investment in the modernisation of the Russian gas infrastructure and the improvements of the LNG process. In the two given scenarios the indirect emissions of the natural gas used in Germany will decrease from about 23 million t CO2-eq (2005) to 19.5 or 17.6 million t CO2-eq in the year 2030. In spite of a significant higher gas consumption the emissions are reduced in the first scenario due to technical modifications. In the second scenario the emission reduction is based on the lower gas consumption.

Conclusions

At present, the indirect GHG emissions of the natural gas process chain are comparable to the indirect emissions produced by oil and coal. The emission trend of the natural gas process chain will markedly decrease if the mitigation options are followed consistently. However, in order to ensure the long-term security of natural gas supply for future decades, a high level of investment is essential. With regard to future emissions, the best available technology and, therefore, that which is most economically feasible in the long term, should be used. Under these conditions natural gas — as the fossil fuel with the lowest levels of GHG emissions — can play a major role in the transition to a renewable energy supply for the future.  相似文献   

7.
Industrial SO2 is the most important air pollutant in China. This paper outlines the technological impacts on industrial SO2 emissions in China in terms of: amount, intensity, structure of energy consumption and structure of energy-intensive industries. It shows that industrial SO2 emissions have linear growth alongside increases in energy consumption, particularly the rise in coal consumption. The contribution of technological factors to decreases in the intensity of energy consumption is 25%, while the structural factor is 75%. The power industry accounts for 52.6% of total industrial SO2. Optimisation of the structure of energy consumption can reduce SO2 emissions by 1.98 million tonnes per year. We propose the following technological strategies for industrial SO2 abatement: adjustment of the system and structure of thermal power generating units, acceleration of flue gas desulphurisation projects, transformation of industrial structures, development of eco-industries and a reduction in energy consumption per unit product. In addition, an effective way to abate industrial SO2 emissions is to promote governance strategies to stricly enforce SO2 emission standards, conduct emission trading, and formulate incentives for encouraging cleaner production and clean energy development.  相似文献   

8.
The Brazilian government has already acknowledged the importance of investing in the development and application of technologies to reduce or prevent CO2 emissions resulting from human activities in the Legal Brazilian Amazon (BA). The BA corresponds to a total area of 5 × 106 km2 from which 4 × 106 km2 was originally covered by the rain forest. One way to interfere with the net balance of greenhouse gases (GHG) emissions is to increase the forest area to sequester CO2 from the atmosphere. The single most important cause of depletion of the rain forest is cattle ranching. In this work, we present an effective policy to reduce the net balance of CO2 emissions using optimal control theory to obtain a compromising partition of investments in reforestation and promotion of clear technology to achieve a CO2 emission target for 2020. The simulation indicates that a CO2 emission target for 2020 of 376 million tonnes requires an estimated forest area by 2020 of 3,708,000 km2, demanding a reforestation of 454,037 km2. Even though the regional economic growth can foster the necessary political environment for the commitment with optimal emission targets, the reduction of 38.9% of carbon emissions until 2020 proposed by Brazilian government seems too ambitious.  相似文献   

9.
This paper develops an integrated model of the fuel and agricultural sectors to analyze the welfare and greenhouse gas emission (GHG) effects of the existing Renewable Fuel Standard (RFS), a Low Carbon Fuel Standard (LCFS) and a carbon price policy. The conceptual framework shows that these policies differ in the incentives they create for the consumption and mix of different types of biofuels and in their effects on food and fuel prices and GHG emissions. We also simulate the welfare and GHG effects of these three policies which are normalized to achieve the same level of US GHG emissions. By promoting greater production of food-crop based biofuels, the RFS is found to lead to a larger reduction in fossil fuel use but also a larger increase in food prices and a smaller reduction in global GHG emissions compared to the LCFS and carbon tax. All three policies increase US social welfare compared to a no-biofuel baseline scenario due to improved terms-of-trade, even when environmental benefits are excluded; global social welfare increases with a carbon tax but decreases with the RFS and LCFS due to the efficiency costs imposed by these policies, even after including the benefits of mitigating GHG emissions.  相似文献   

10.
SUMMARY

A method is presented to interrelate the development of economy, environment and social quality in communities. Economy and environment, in initial development stages, oppose each other. Social welfare and economy generally develop simultaneously. To assess overall progress in sustainable development, an integrated and quantifiable framework is presented which defines five levels of sustainability. Increasing sustainability is characterized by growing responsibility for the impacts of man's actions in space and time. Through increased eco-efficiency and changed awareness, nations and companies arrive at a synergistic relationship between environment and economy. It is indicated that social security benefits expenditure increases by a factor 3.5 and carbon dioxide emissions per capita decreases by a factor 3 at each higher level of sustainability. Quantified differences in sustainability levels of 24 nations are shown. Priorities for improving and safeguarding sustainability are indicated.  相似文献   

11.
麦秸还田与土壤耕作对稻季CH_4和N_2O排放的影响   总被引:2,自引:0,他引:2  
2008年在大田试验条件下,设置麦秸还田旋耕、麦秸不还田旋耕、麦秸还田翻耕、麦秸不还田翻耕4个处理,采用静态暗箱-气相色谱法田间原位观测稻麦两熟制农田水稻生长季CH_4和N_2O排放通量,研究小麦秸秆全量还田与土壤耕作两项技术措施对稻季CH_4和N_2O排放的影响及其温室效应,以期为稻麦两熟制农田温室气体减排提供对策.结果表明:麦秸还田对稻季CH_4排放总量的影响达极显著水平,麦秸还田与耕作方式的互作效应对CH_4排放总量有显著影响,麦秸还田和耕作方式对N_2O排放总量的影响均达极显著水平;不同麦秸还田与土壤耕作处理稻季OH4排放总量为:麦秸还田旋耕>麦秸还田翻耕>麦秸不还田翻耕>麦秸不还田旋耕,N_2O的排放总量为:麦秸不还田翻耕>麦秸不还田旋耕>麦秸还田翻耕>麦秸还田旋耕;与麦秸不还田相比,相同耕作措施下麦秸还用排放CH_44和N_2O所产生的全球增温潜势(GWP)明显提高.麦秸还田条件下旋耕处理的GWP高于翻耕处理,而"单位产量的GWP"无明显差异,麦秸不还田条件下采用旋耕措施较翻耕可减轻温室效应.  相似文献   

12.
Radiocarbon from nuclear fallout is a known health risk. However, corresponding risks from natural background radiocarbon incorporated directly into human genetic material have not been fully appreciated. Here we show that the average person will experience between 3.4 × 1010 and 3.4 × 1011 lifetime chromosomal damage events from natural background radiocarbon incorporated into DNA and histones, potentially leading to cancer, birth defects, or accelerated aging. This human genetic damage can be significantly reduced using low radiocarbon foods produced by growing plants in CO2 recycled from ordinary industrial greenhouse gas fossil fuel emissions, providing additional incentive for the carbon sequestration.  相似文献   

13.
As an important tool for environment management, eco-efficiency has been widely applied, but eco-effectiveness has only made progress on eco-design and life cycle management in recent years. Few have attempted to integrate eco-efficiency and eco-effectiveness into sustainable industrial systems. In a new framework integrating eco-efficiency and eco-effectiveness, both concepts can find unique roles and complement each other in industrial ecosystems to dissolve conflicts between industry and the environment. This article provides a case study of China in which eco-efficiency indicators (energy, water and waste utilisation intensity) have demonstrated great progress in China, but eco-efficiency cannot stop the increasing release of pollutants and their accumulating impact on ecological life-support systems. China must integrate eco-effectiveness and eco-efficiency into concrete sustainable development strategies, questioning whether limited resources are being used correctly. Both eco-efficiency and eco-effectiveness are identified as important indicators in the development of sustainable industrial systems. In the framework of sustainable industrial systems, eco-effectiveness must begin to play a more important role.  相似文献   

14.
Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying–wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.  相似文献   

15.
Under the pressures of climate change, many countries are trying to adapt to a low-carbon economy. In this paper, we review the development pattern of the low-carbon economy of major countries and its impact on the world economy. We then argue that economic development and abatement of greenhouse gas (GHG) emissions in China should be balanced. The challenges that China faces should also be considered carefully. It is necessary for China to find an approach to solve the issues of climate change, which should include new technologies and establishing incentive mechanisms and reform-oriented policies. These guidelines can adjust the structure of the economy and energy use, improve energy efficiency, promote the development of alternative and renewable energy, enhance the potential of carbon sinks, and develop advanced technology to perfect a 'Clean Development Mechanism' and sustainable development through international cooperation.  相似文献   

16.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   

17.
The most important question raised from issues of environmental degradation is how economic activities bring about changes that will result in pollution. In the pursuit of tourism economy, contrary to popular interest, the travel and tourism (T&T) industry may cause environmental damages through the emissions of carbon dioxide (CO2) from energy consumption in areas such as transportation and delivery of amenities. Given this major concern, this paper attempts to investigate the linkage between tourism and CO2 emissions in Malaysia between 1981 and 2011. In particular, this study fills the knowledge gap by taking a closer look at the impact of international tourist arrivals on CO2 emissions by sector – electricity and heat generation and transport. Results from the bound test method suggest that there exists a long-run relationship among the variables under consideration when CO2 emissions become the dependent variable. The original result is similarly robust to alternatives, which are CO2 emissions from sectors of electricity and heat generation and transport. Furthermore, the vector error correction model causality analysis indicates a causal relationship between tourism and CO2 emissions by transport and electricity and heat generation. Subsequently, several tourism-related policies are drawn from these findings.  相似文献   

18.
Statistic and econometric regression models were established in this study to analyze and predict industrial water demand, water deficits, and their future uncertainty in Beijing—a Chinese city with a severe water stress problem. A forecasting model was selected based on a modeling evaluation by comparing predictions with observations. Four scenarios were designed to simulate and analyze the future uncertainty of industrial water demand and the water deficit of Beijing. The modeling results for industrial water demand suggested that Beijing industry would face a water deficit between 3.06 × 108 m3 in 2008 and 2.77×108 m3 in 2015, though its industrial water demand would decrease from 6.31×108 m3 to 4.84 ×108 m3 during this period of time. Results from simulated scenario illustrated that, due to the extreme water scarcity situation, industry in Beijing would still face a serious water deficit problem even with a very optimistic scenario for the future.  相似文献   

19.
Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10?7 to 1.2 × 10?5 (year?1) for total PBDEs and from 2.9 × 10?7 to 7.2 × 10?6 (year?1) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10–3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.  相似文献   

20.

Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such as increasing temperatures, extreme winds, rising sea levels, and decreased precipitation, may impact renewable energies. Here we review renewable energies with a focus on costs, the impact of climate on renewable energies, the impact of renewable energies on the environment, economy, and on decarbonization in different countries. We focus on solar, wind, biomass, hydropower, and geothermal energy. We observe that the price of solar photovoltaic energy has declined from $0.417 in 2010 to $0.048/kilowatt-hour in 2021. Similarly, prices have declined by 68% for onshore wind, 60% for offshore wind, 68% for concentrated solar power, and 14% for biomass energy. Wind energy and hydropower production could decrease by as much as 40% in some regions due to climate change, whereas solar energy appears the least impacted energy source. Climate change can also modify biomass productivity, growth, chemical composition, and soil microbial communities. Hydroelectric power plants are the most damaging to the environment; and solar photovoltaics must be carefully installed to reduce their impact. Wind turbines and biomass power plants have a minimal environmental impact; therefore, they should be implemented extensively. Renewable energy sources could decarbonize 90% of the electricity industry by 2050, drastically reducing carbon emissions, and contributing to climate change mitigation. By establishing the zero carbon emission decarbonization concept, the future of renewable energy is promising, with the potential to replace fossil fuel-derived energy and limit global temperature rise to 1.5 °C by 2050.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号