首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: If occurrence of individual species can be modeled as a function of easily quantified environmental variables (e.g., derived from a geographic information system [GIS]) and the predictions of these models are demonstrably successful, then the scientific foundation for management planning will be strengthened. We used Bayesian logistic regression to develop predictive models for resident butterflies in the central Great Basin of western North America. Species inventory data and values for 14 environmental variables from 49 locations (segments of canyons) in the Toquima Range ( Nevada, U.S.A.) were used to build the models. Squares of the environmental variables were also used to accommodate possibly nonmonotonic responses. We obtained statistically significant models for 36 of 56 (64%) resident species of butterflies. The models explained 8–72% of the deviance in occurrence of those species. Each of the independent variables was significant in at least one model, and squared versions of five variables contributed to models. Elevation was included in more than half of the models. Models included one to four variables; only one variable was significant in about half the models. We conducted preliminary tests of two of our models by using an existing set of data on the occurrence of butterflies in the neighboring Toiyabe Range. We compared conventional logistic classification with posterior probability distributions derived from Bayesian modeling. For the latter, we restricted our predictions to locations with a high ( 70%) probability of predicted presence or absence. We will perform further tests after conducting inventories at new locations in the Toquima Range and nearby Shoshone Mountains, for which we have computed environmental variables by using remotely acquired topographic data, digital-terrain and microclimatic models, and GIS computation.  相似文献   

2.
Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges because (i) they typically violate SDM's assumption that the organism is in equilibrium with its environment, and (ii) species absence data are often unavailable or believed to be too difficult to interpret. This often leads researchers to generate pseudo-absences for model training or utilize presence-only methods, and to confuse the distinction between predictions of potential vs. actual distribution. We examined the hypothesis that true-absence data, when accompanied by dispersal constraints, improve prediction accuracy and ecological understanding of iSDMs that aim to predict the actual distribution of biological invasions. We evaluated the impact of presence-only, true-absence and pseudo-absence data on model accuracy using an extensive dataset on the distribution of the invasive forest pathogen Phytophthora ramorum in California. Two traditional presence/absence models (generalized linear model and classification trees) and two alternative presence-only models (ecological niche factor analysis and maximum entropy) were developed based on 890 field plots of pathogen occurrence and several climatic, topographic, host vegetation and dispersal variables. The effects of all three possible types of occurrence data on model performance were evaluated with receiver operating characteristic (ROC) and omission/commission error rates. Results show that prediction of actual distribution was less accurate when we ignored true-absences and dispersal constraints. Presence-only models and models without dispersal information tended to over-predict the actual range of invasions. Models based on pseudo-absence data exhibited similar accuracies as presence-only models but produced spatially less feasible predictions. We suggest that true-absence data are a critical ingredient not only for accurate calibration but also for ecologically meaningful assessment of iSDMs that focus on predictions of actual distributions.  相似文献   

3.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   

4.
Predicting species distributions from samples collected along roadsides   总被引:1,自引:0,他引:1  
Predictive models of species distributions are typically developed with data collected along roads. Roadside sampling may provide a biased (nonrandom) sample; however, it is currently unknown whether roadside sampling limits the accuracy of predictions generated by species distribution models. We tested whether roadside sampling affects the accuracy of predictions generated by species distribution models by using a prospective sampling strategy designed specifically to address this issue. We built models from roadside data and validated model predictions at paired locations on unpaved roads and 200 m away from roads (off road), spatially and temporally independent from the data used for model building. We predicted species distributions of 15 bird species on the basis of point-count data from a landbird monitoring program in Montana and Idaho (U.S.A.). We used hierarchical occupancy models to account for imperfect detection. We expected predictions of species distributions derived from roadside-sampling data would be less accurate when validated with data from off-road sampling than when it was validated with data from roadside sampling and that model accuracy would be differentially affected by whether species were generalists, associated with edges, or associated with interior forest. Model performance measures (kappa, area under the curve of a receiver operating characteristic plot, and true skill statistic) did not differ between model predictions of roadside and off-road distributions of species. Furthermore, performance measures did not differ among edge, generalist, and interior species, despite a difference in vegetation structure along roadsides and off road and that 2 of the 15 species were more likely to occur along roadsides. If the range of environmental gradients is surveyed in roadside-sampling efforts, our results suggest that surveys along unpaved roads can be a valuable, unbiased source of information for species distribution models.  相似文献   

5.
Short‐term surveys are useful in conservation of species if they can be used to reliably predict the long‐term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short‐term demographic data (1999–2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999–2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers. Precisión de Datos Demográficos de Corto Plazo en la Proyección del Destino de Poblaciones a Largo Plazo  相似文献   

6.
《Ecological modelling》2005,181(4):445-459
Spatially explicit simulation models of varying degree of complexity are increasingly used in landscape and species management and conservation. The choice as to which type of model to employ in a particular situation, is however, far too often governed by logistic constraints and the personal preferences of the modeller, rather than by a critical evaluation of model performance. We present a comparison of three common spatial simulation approaches (patch-based incidence-function model (IFM), individual-based movement model (IBMM), individual-based population model including detailed behaviour and demographics (IBPM)). The IBPM was analysed in two versions (IBPM_st and IBPM_dyn). Both assumed spatial heterogeneity of the matrix, but the IBPM_dyn in addition included temporal matrix dynamics. The models were developed with a shared minimum objective, namely to predict dynamics of individuals or populations in space given a specific configuration of habitat patches. We evaluated how the choice of model influenced predictions regarding the effect of patch and corridor configuration on dispersal probabilities and the number of successful immigrants of a simulated small mammal. Model results were analysed both at the level of the entire habitat network and at the level of individual patches.All models produced similar rankings of alternative habitat networks, but large discrepancies existed between absolute estimates of dispersal probabilities and the number of successful immigrants predicted by the different models. Generally, predicted dispersal probabilities were highest in the IBMM, intermediate in the IFM and the IBPM_st and lowest in the IBPM_dyn. Observed differences were due both to differences in implementation (e.g. raster versus vector-based movement algorithms), the chosen level of detail in landscape representation (e.g. matrix complexity) and the degree of behavioural realism included in the models (e.g. demography, differentiated mortality).The advantages and disadvantages of the three modelling approaches are discussed, as are the implications of the results for the recommended use of the three types of models in practical management.  相似文献   

7.
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.  相似文献   

8.
Abstract:  Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.–Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls ( Glaucidium brasilianum ), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep ( Ovis canadensis mexicana ). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance ( p ≤ 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for FST= 0.010–0.115, Nm = 1.9–24.8, M = 10.4–15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.  相似文献   

9.
Global Warming and the Species Richness of Bats in Texas   总被引:1,自引:0,他引:1  
General circulation models provide predictions for global climate under scenarios of increased atmospheric CO2. Climate change is expected to lead directly to changes in distributions of vegetation associations. Distribution of animals will also change to the extent that animals rely on vegetation for food or shelter. Bat species in Texas appear to be restricted, in part, by the availability of roosts. We used geographic information systems and the Holdridge vegetation-climate association scheme to model the effect of climate change on bat distributions and species richness in Texas. Habitat characteristics for each species were identified from the literature and included vegetation, topography, and availability of caves. We assumed caves and topography to be fixed relative to climate. Vegetation changes were predicted from the Holdridge vegetation-climate association scheme. The redistribution of bats following climate change was predicted based on the new locations of suitable habitat characteristics. Under conditions of global warming tropical forests were predicted to expand into Texas; tree-roosting bats were sensitive to this change in vegetation. Cavity-roosting bats were less affected by changes in vegetation, but, where response was predicted, ranges decline.  相似文献   

10.
Empirical models for predicting the distribution of organisms from environmental data have often focused on principles of ecological niche theory. However, even at large scales, there is little agreement over how to represent the dimensions of a species’ niche. The performance of such models is greatly affected by the nature of species distributional and environmental data. Regional scale distribution models were developed for 30 willow species in Ontario to examine (i) the predictive ability of logistic regression analysis, and (ii) the effects of using different distributional and environmental data sets. Two original measures of model accuracy and over-prediction were employed and evaluated using independent data. Models based on unique combinations of monthly climate data predicted distributions most accurately for all species. Models based on a fixed set of variables, while generating the highest average probabilities of occurrence for certain species with limited ranges, resulted in the greatest under- and over-estimates of willow distributions. Comparisons of models demonstrated climatic patterns among willows of differing habit and habitat. The distribution of dwarf willow species, present only in the Ontario arctic, followed gradients of summer maximum temperatures. The distribution of the tree species in the southerly portions of the province followed gradients of fall and winter minimum temperatures. Regardless of distributional and environmental data input, no algorithm maximized model performance for all species. Individual species models require individual approaches; i.e., the variable selection technique, the set of environmental factors used as predictors, and the nature of species distributional data must be carefully matched to the intended application. An understanding of evolutionary processes enhances the meaningful interpretation of individual species models. Unless sampling bias and species prevalence can be accounted for, models based on collection point data are best used to guide field surveys. While inferred range data may be better suited to determine potential ecological niches, overestimation of species prevalence and environmental tolerance must be recognized. A combination of available distributional data types is recommended to best determine species niches, an important step in developing conservation strategies.  相似文献   

11.
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence–absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data—erroneous species presence–absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.  相似文献   

12.
Evaluations of the potential distribution of invasive species can increase the efficiency of their management by focusing prevention measures. Generally, ecological models are built using occurrence data from a species' native range to predict the distribution in areas that the species may invade. However, historical and geographical constraints can limit a species' native distribution. Genetic Algorithm for Rule-set Production (GARP), an ecological niche modeling program, was used to predict the potential distribution of the invasive, freshwater New Zealand mudsnail, Potamopyrgus antipodarum, in Australia and North America. We compared the strength of the predictions made by models built with data from the snail's native range in New Zealand to models built with data from the locations invaded by the species. A time-series analysis of the Australian models demonstrated that range-of-invasion data can make better predictions about the potential distribution of invasive species than models built with native range data. Large differences among the model forecasts indicate that uncritical choice of the data set used in training the GARP models can result in misleading predictions. The models predict a large expansion in the range of P. antipodarum in both Australia and North America unless prevention measures are implemented rapidly.  相似文献   

13.
Miller DA 《Ecology》2012,93(5):1204-1213
Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.  相似文献   

14.
Developing robust species distribution models is important as model outputs are increasingly being incorporated into conservation policy and management decisions. A largely overlooked component of model assessment and refinement is whether to include historic species occurrence data in distribution models to increase the data sample size. Data of different temporal provenance often differ in spatial accuracy and precision. We test the effect of inclusion of historic coarse-resolution occurrence data on distribution model outputs for 187 species of birds in Australian tropical savannas. Models using only recent (after 1990), fine-resolution data had significantly higher model performance scores measured with area under the receiver operating characteristic curve (AUC) than models incorporating both fine- and coarse-resolution data. The drop in AUC score is positively correlated with the total area predicted to be suitable for the species (R2 = 0.163-0.187, depending on the environmental predictors in the model), as coarser data generally leads to greater predicted areas. The remaining unexplained variation is likely to be due to the covariate errors resulting from resolution mismatch between species records and environmental predictors. We conclude that decisions regarding data use in species distribution models must be conscious of the variation in predictions that mixed-scale datasets might cause.  相似文献   

15.
Models of species’ demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species’ native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species’ demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective (and probably require less effort) than year-round control efforts. Our study demonstrates the importance of considering the hierarchy of parameters in estimating population growth rate and evaluating different management strategies for non-indigenous invasive species.  相似文献   

16.
Coastal environments host plant taxa adapted to a wide range of salinity conditions. Salinity, along with other abiotic variables, constrains the distribution of coastal plants in predictable ways, with relatively few taxa adapted to the most saline conditions. However, few attempts have been made to quantify these relationships to create niche models for coastal plants. Quantification of the effects of salinity, and other abiotic variables, on coastal plants is essential to predict the responses of coastal ecosystems to external drivers such as sea level rise. We constructed niche models for 132 coastal plant taxa in Great Britain based on eight abiotic variables. Paired measurements of vegetation composition and abiotic variables are rare in coastal habitats so four of the variables were defined using community mean values for Ellenberg indicators, i.e. scores assigned according to the typical alkalinity, fertility, moisture availability and salinity of sites where a species occurs. The remaining variables were the canopy height, annual precipitation, and maximum and minimum temperatures. Salinity and moisture indicator scores were significant terms in over 80 % of models, suggesting the distributions of most coastal species are at least partly determined by these variables. When the models were used to predict species occurrence against an independent dataset 64 % of models gave moderate to good predictions of species occurrence. This indicates that most models had successfully captured the key determinants of the niche. The models could potentially be applied to predict changes to habitats and species-dependent ecosystem services in response to rising sea levels.  相似文献   

17.
Fire is both a widespread natural disturbance that affects the distribution of species and a tool that can be used to manage habitats for species. Knowledge of temporal changes in the occurrence of species after fire is essential for conservation management in fire-prone environments. Two key issues are: whether postfire responses of species are idiosyncratic or if multiple species show a limited number of similar responses; and whether such responses to time since fire can predict the occurrence of species across broad spatial scales. We examined the response of bird species to time since fire in semiarid shrubland in southeastern Australia using data from surveys at 499 sites representing a 100-year chronosequence. We used nonlinear regression to model the probability of occurrence of 30 species with time since fire in two vegetation types, and compared species' responses with generalized response shapes from the literature. The occurrence of 16 species was significantly influenced by time since fire: they displayed six main responses consistent with generalized response shapes. Of these 16 species, 15 occurred more frequently in mid- or later-successional vegetation (> 20 years since fire), and only one species occurred more often in early succession (< 5 years since fire). The models had reasonable predictive ability for eight species, some predictive ability for seven species, and were little better than random for one species. Bird species displayed a limited range of responses to time since fire; thus a small set of fire ages should allow the provision of habitat for most species. Postfire successional changes extend for decades and management of the age class distribution of vegetation will need to reflect this timescale. Response curves revealed important seral stages for species and highlighted the importance of mid- to late-successional vegetation (> 20 years). Although time since fire clearly influences the distribution of numerous bird species, predictive models of the spatial distribution of species in fire-prone landscapes need to incorporate other factors in addition to time since fire.  相似文献   

18.
Predicting the Range of Chinese Mitten Crabs in Europe   总被引:1,自引:0,他引:1  
Abstract:  Ecological niche modeling provides a means for predicting the potential future distribution of a nonindigenous species based on environmental characteristics of the species' native range. We applied this method to the Chinese mitten crab (Eriocheir sinensis) , a catadromous crustacean with a long history of invasion in Europe. We used genetic algorithm for rule-set prediction to predict the potential European distribution of mitten crab based on its distribution in 42 locations in its native Asia. The climatic variables, air temperature, number of days, amount of precipitation, and wetness index, contributed significantly to predictions of native distribution limits. Although the genetic algorithm for rule-set prediction model was developed for the native range, the species' extensive distribution in Europe ( n = 434) allowed independent validation of the predictions. Application of the model to Europe was successful, with 84% of occurrences in regions predicted to be suitable by >80% of the models and <4% of occurrences in areas predicted suitable by <50% of the models (mainly along the northern range). At the watershed scale, areas with established mitten crab populations had significantly higher habitat matching than sites that were not invaded. The independent validation of the Asian-based model by the European distribution revealed that predictions were highly accurate. The model also identified large areas of Europe, particularly along the Mediterranean coast, as vulnerable to future invasion. These predictions can be used to develop strategies to control the spread of mitten crab by preventing introductions into vulnerable areas.  相似文献   

19.
Abstract:  Biodiversity conservation on agricultural land is a major issue worldwide. We estimated separate and joint effects of remnant native woodland vegetation and recent tree plantings on birds on farms (approximately 500–1000 ha) in the heavily cleared wheat and sheep belt of southern Australia. Much of the variation (>70%) in bird responses was explained by 3 factors: remnant native-vegetation attributes (native grassland, scattered paddock trees, patches of remnant native woodland); presence or absence of planted native trees; and the size and shape of tree plantings. In terms of the number of species, remnant native vegetation was more important than tree planting, in a 3:1 ratio, approximately. Farms with high values for remnant native vegetation were those most likely to support declining or vulnerable species, although some individual species of conservation concern occurred on farms with large plantings. Farm management for improved bird conservation should account for the cumulative and complementary contributions of many components of remnant native-vegetation cover (e.g., scattered paddock trees and fallen timber) as well as areas of restored native vegetation.  相似文献   

20.
Detecting range shifts and contractions is critical for determining the conservation priority of rare and declining taxa. However, data on rare species occurrences frequently lack precise information on locations and habitats and may present a biased picture of biogeographic distributions and presumed habitat preferences. Herbarium or museum specimen data, which otherwise could be useful proxies for detecting temporal trends and spatial patterns in species distributions, pose particular challenges. Using data from herbaria and Natural Heritage Programs on numbers of occurrences within individual municipalities (towns, cities, or townships), we quantified temporal changes in the estimated distributions of 110 rare plant species in the six New England (USA) states. We used the partial Solow equation and a nonparametric test to estimate the probability of observing multiple absences (gaps in the collection record) if a given population was actually still extant. Bayes' Theorem was used to estimate the probability that occurrences were misclassified as extinct. Using the probabilities obtained from these three methods, we eliminated taxa with high probabilities of pseudo-absence (that would yield an inaccurate profile of species distributions), narrowing the set for final analysis to 71 taxa. We then expressed occurrences as centroids of town polygons and estimated current and historical range areas (extents of occurrence as defined by alpha-hulls inscribing occurrences), mean distances between occurrences, and latitudinal and longitudinal range boundaries. Using a geographic information system, we modeled first, second, and third circular standard deviational polygons around the mean center of the historical range. Examining the distribution of current occurrences within each standard deviational polygon, we asked whether ranges were collapsing to a center, expanding, fragmenting, or contracting to a margin of the former range. Extant ranges of the species were, on average, almost 67% smaller than their historical ranges, and distances among occurrences decreased. Five New England hotspots were observed to contain >35% of rare plant populations. Extant occurrences were more frequently marginalized at the periphery of the historical range than would be expected by chance. Coarse-grained data on current and historical occurrences can be used to examine large suites of species to prioritize taxa and sites for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号