首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 562 毫秒
1.
武汉市郊典型利用方式下土壤磷素特征及流失风险分析   总被引:3,自引:1,他引:2  
当前地表水体环境问题日益突出,磷素作为水体富营养化的关键控制因子而备受关注。本研究通过实地采样分析,研究了武汉市郊区典型利用方式下土壤磷素形态剂含量特征,并分析了其流失风险。结果表明:不同利用方式下的土壤磷素水平差异较大,各形态磷水平排序是蔬菜地稻田常规旱地苗圃地;武汉城郊0~20cm表层土壤全磷(TP)含量为255.4~1763.1mg/kg,平均值为975.4mg/kg;土壤有效磷(Olsen-P)为1.3~164.2mg/kg,平均值为56.4mg/kg;藻类有效磷(NaOH-P)含量为33.4~910.7mg/kg,平均值为204.0mg/kg;土壤Olsen-P为56.0mg/kg可作为武汉市郊区土壤磷素流失的临界值,且超过该临界值的土样有34.9%,其中有93.3%采自蔬菜地,表明各利用方式下蔬菜地土壤磷素流失风险最高。  相似文献   

2.
适宜的磷素分级方法是研究磷素组分特征与评价其有效性的关键.以磷素的化学与生物活化特点,采用改进的生物有效性的磷素分级方法,应用其研究不同土地利用方式下旱地土与水田土中磷素组分与有效磷(Olsen-P)的关系,并分析环境因子对磷组分的影响.磷素分级方法将磷素分为4个组分:①自由扩散或根际截留的磷(CaCl2-P);②有机酸活化和无机弱结合磷(Citrate-P);③系列酶矿化的有机磷(Enzyme-P);④潜在活化的无机磷库(HCl-P).结果表明,旱地土及水田土4种磷素组分含量均表现为:HCl-P > Citrate-P>Enzyme-P > CaCl2-P,且旱地土各磷组分均显著高于水田土.Olsen-P与各磷素组分均呈显著正相关,表明各磷素组分对有效磷都有贡献.具体表现为:在旱地土中,Olsen-P与CaCl2-P和Enzyme-P相关性较高(R2=0.359;R2=0.386);在水田土中,Olsen-P与Citrate-P相关性较高(R2=0.788),说明旱地土中有效磷主要来自土壤自由扩散的无机磷和易矿化的有机磷部分,而水田土中有效磷主要来自弱酸活化的无机磷.冗余分析结果表明,磷素组分主要受土壤pH和黏粒含量的影响,指示在农业生产活动中,可通过调节土壤pH值,提高土壤有效磷含量.  相似文献   

3.
可溶性磷径流时间关系模拟研究   总被引:6,自引:0,他引:6  
利用Heckrath分段回归(split-line)模型,对潮褐土Olsen-P、CaCl2-P含量进行拟合,得到潮褐土环境敏感磷临界点对应的土壤Olsen-P含量为69.4 mg/kg.采用循环水法模拟地表径流,研究了不同施磷水平土壤通过径流流失到水体中的可溶性磷(dissoluble phosphorus,DP)与径流时间的关系.利用一级动力学方程模型对径流发生时土壤向水体输入DP总量的动态变化进行模拟分析.结果表明模型能够较好地描述径流发生时磷素从土壤向水体的转移.当施磷量低于400 kg/hm2时,速率常数K没有发生变化,其平均值为1.095 h-1;而当施磷量为800和1 600 kg/hm2时.K值分别减小了17.2%和38.9%.利用指数函数模型对径流发生时土壤向水体输入DP速率随时间的动态变化进行模拟分析,结果表明,当施磷量低于400 kg/hm2时,速率常数K'没有发生变化,其平均值为1.037 h-1;而当施磷量高于800 kg/hm2时.K'值却有所降低.土壤Olsen-P和CaCl2-P与径流发生时土壤的可溶性磷流失潜势(dissoluble phosphorus loss potential,DPLP)和可溶性磷流失初始速率(dissoluble phosphorus loss initial velocity,VPo)间存在明显的线性关系,因此土壤Olsen-P含量和CaCl2-P含量可以作为土壤环境影响评价的指标来指示土壤DP径流损失的风险.  相似文献   

4.
合肥城郊典型农业小流域土壤磷形态及淋失风险分析   总被引:3,自引:2,他引:1  
为掌握合肥城郊二十埠河某农业小流域土壤磷形态及淋失风险水平,在汇水区采集132份表层土壤样.在分析测试基础上,利用ArcGIS软件中Kriging插值模拟技术,解析总磷(TP)、生物有效性磷(Bio-P)的空间分布特征及土壤有效磷(OlsenP)和易解吸磷(CaCl_2-P)的空间变异性;剖析土壤磷素富集水平;并通过确定土壤磷素的淋失临界值,评估汇水区土壤磷素流失风险.结果表明,汇流区土壤TP和Bio-P含量较高的采样点位主要出现在左支流的上游和两支流交汇处的右侧局部区域;土壤磷形态富集系数由大到小排序为:Ca-P(15.01)OP(4.16)TP(3.42)IP(2.94)Ex-P(2.76)Fe/Al-P(2.43)Olsen-P(2.34);土壤有效磷淋失临界值为18.388 mg·kg~(-1),超过临界值的样本数占样本总数的16.6%,高淋失风险区主要分布在左支流上游、右支流中游及两支流汇流处下游的局部地区.  相似文献   

5.
了解土壤磷素积累特征对调控磷肥使用、降低农田磷素的环境风险和保障生态环境安全具有重要意义。以黄土高原沟壑区的典型小流域为对象,分析了18年来(1986~2004)综合治理条件下流域土壤全磷、有效磷(Olsen-P)含量的时空变化特征及其对土壤水溶性磷含量变化的影响。结果表明,截至到2004年,流域磷素积累由塬面逐步向塬坡和沟道扩展。2004年,农田土壤全磷(752 mg·kg-1)和Olsen-P(20.2 mg·kg-1)较1986年分别提高了45%和3.5倍,相当于每年全磷提高13 mg P·kg-1,Oslen-P每年提高1.0 mg·kg-1,流域50%的农田土壤Olsen-P含量超过15 mg kg-1。与1993年大规模建立果园时相比,果园土壤全磷每年提高20~30 mg P·kg-1,Olsen-P每年提高3~4 mg·kg-1,2004年已有70%的果园土壤Olsen-P含量超过15 mg kg-1。20~60cm土层的果园全磷和有效磷含量也逐渐提高。但林草地的全磷没有显著变化,Olsen-P依然低于5.0 mg kg-1。1986年以来,无机磷肥的持续投入是流域土壤磷素积累的主导因素。流域土壤Olsen-P与全磷存在显著地(p<0.001)线性相关关系;水溶性磷与Olsen-P含量呈显著地(p<0.001)指数函数关系。土壤磷素大量积累已成为黄土高原的水土流失区当前十分迫切的农田环境问题。  相似文献   

6.
典型设施环境条件对土壤活性磷变化的影响   总被引:3,自引:0,他引:3  
采用室内强化模拟试验,研究了90d培养期内环境温度、土壤酸化和盐渍化3种典型设施环境条件对土壤易解吸磷(CaCl2-P)、有效磷(Olsen-P)、微生物生物量磷(MB-P)以及微生物生物量碳磷比(MB-C/P)等活性磷的影响.结果显示,设施土壤MB-P含量随着环境温度的升高而显著上升;10℃培养结束时土壤CaCl2-P和Olsen-P含量比4℃对照分别提高15.6%和2.7%.酸化促进设施土壤CaCl2-P及Olsen-P含量增加,而使土壤MB-P含量显著下降.培养结束时,与pH值为6.89的对照土壤相比,pH值为6.11和5.30的酸化处理土壤CaCl2-P含量分别提高26.7%和156.1%,其Olsen-P含量分别增加14.1%和91.5%,其MB-P含量的降幅分别为13.3%和16.3%.盐化对土壤CaCl2-P和Olsen-P含量的影响均不显著,土壤MB-P含量在12d后随盐化程度加重而显著下降.培养结束时,与土壤可溶性盐分为1.90g/kg的对照相比,可溶性盐分为3.05g/kg和5.01g/kg的土壤MB-P含量分别下降42.2%和45.8%.另外,设施环境温度提升、酸化和盐化使土壤MB-C/P在40d后整体上均呈下降趋势.综上所述,在4~25℃范围内提升环境温度,减缓土壤pH值从6.89降至5.30的酸化过程,阻控土壤可溶性盐分从1.90g/kg升至5.01g/kg盐化进程,可保证设施土壤磷素供应,降低土壤磷素流失风险,增强微生物调控土壤有效磷库的潜力.  相似文献   

7.
应用淡水沉积物中磷形态的标准测试程序(SMT)对三峡入库河流大宁河回水区表层沉积物、消落带土壤不同形态P进行了分级测定,分析了各形态磷之间以及各形态磷与样品理化性质如有机质、主要氧化物组成之间的相关性.结果表明,沉积物总磷含量在483.4~848.4 mg/kg之间,平均为569.0 mg/kg,与长江中下游浅水湖泊表层沉积物总磷含量相比,大宁河回水区表层沉积物TP含量处于中下游水平,而消落带土壤中总磷含量在488.9~1 487.7 mg/kg之间,平均含量为813.3 mg/kg,远远高于沉积物样品总磷含量,显示了人类活动对消落带土壤P含量的影响.各种形态P在河流沉积物与岸边消落带土壤中分布特点不同: ① 河流沉积物中IP/TP(平均值55.7%)略高于消落带土壤(平均值49.4%);② 河流沉积物中IP以Ca-P为主(平均比例为83.5%), Fe/Al-P占IP比例仅为15%;消落带土壤Ca-P占IP平均比例为73.9%, 而Fe/Al-P占IP比例上升至22%;③ 河流沉积物中活性磷组分(OP+Fe/Al-P)平均含量为261.8 mg/kg,在TP中所占比例平均值为49%,而消落带土壤活性磷组分(OP+Fe/Al-P)平均含量为405.7 mg/kg,在TP中所占比例平均达到54%.消落带土壤中活性磷组分在适宜的环境条件下会成为水体的二次污染源,因此消落带土壤P对水体富营养化的潜在影响不容忽视.  相似文献   

8.
紫色水稻土磷素动态特征及其环境影响研究   总被引:6,自引:3,他引:3  
李学平  石孝均 《环境科学》2008,29(2):434-439
采用单排单灌的田间试验,研究了施用化学磷肥和有机肥对水稻生长期稻田径流水和田面水中磷素动态变化的影响,并对其可能产生的环境风险进行了分析.结果表明,随着施磷水平的提高田面水磷含量升高,施肥24 h后各处理田面水磷素含量最高,总磷(TP)含量在0.928~3.824 mg/L之间;前30 d田面水磷含量波动大,TP平均含量在0.259~1.433 mg/L之间,超过水体富营养化的临界值,在此期间应避免排水和中耕等田间管理;40 d之后田面水磷含量缓慢下降,60 d后趋于稳定,且含量较低.径流水各形态磷的含量和流失负荷随着降雨强度和磷肥用量的增加而增加,径流水中溶解磷(DP)占TP的50%以上,稻田土壤磷素淋失以DP为主,磷素流失负荷在0.358~2.579 kg/hm2之间.稻田磷素流失也受施肥方式的影响,施用牛粪比施用秸秆更容易导致磷素的流失,施用牛粪处理磷素流失负荷比施用秸秆处理高40%,化学磷肥与秸秆配施稻田磷素流失负荷和表观流失率显著降低,秸秆与磷肥配合施用是减少稻田磷素流失的较好措施.  相似文献   

9.
南水北调中线源头区蓄水前土壤氮磷分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
采集南水北调中线源头区(高程170m以下)19个村庄的43个土壤样品,分析了丹江口水库淅川县蓄水前不同土地利用类型土壤中有机质、总氮、硝态氮、铵态氮和总磷的分布特征.结果表明,研究区土壤总氮含量介于18.15~185.98mg/kg之间,硝态氮介于5.75~77.96mg/kg之间,铵态氮介于5.72~26.38mg/kg之间,总磷介于37.98~147.32mg/kg之间,有机质介于7.19~45.32g/kg之间;研究区土壤氮素、总磷和有机质含量受地形及地理位置影响较小,不同土地利用类型土壤中总氮、硝态氮及有机质含量存在显著差异,总磷和铵态氮含量差异性不明显,有机质含量大小依次为村庄>水稻田>池塘>消落带>旱地>林地,总氮含量大小依次为水稻田>村庄>池塘>消落带>旱地>林地,硝态氮含量大小依次为村庄>池塘>消落带>旱地>水稻田>林地;相关性分析表明,土壤有机质与总氮含量之间存在极显著正相关性(r=0.837, P<0.01),铵态氮含量与有机质、总氮呈显著正相关性(分别为r=0.455, P<0.05;r =0.434, P<0.05),而这三者与硝态氮之间相关性不明显;土壤总磷与有机质、总氮、硝态氮、铵态氮含量之间无明显相关性.  相似文献   

10.
针对喀斯特地区有机物料盈余、土壤养分贫瘠和易流失的特点,设置长期有机物料还田小区定位试验,试验包括6个处理:不施肥对照(CK)、无机肥(NPK)、无机肥+玉米秸秆(NPKS)、无机肥+农家肥(NPKM)、无机肥+滤泥(NPKL)和无机肥+甘蔗灰(NPKA).研究不同有机物料投入对土壤磷赋存形态和磷活化功能微生物(含有机磷矿化基因细菌)群落结构的影响.通过3 a断续的观测,结果表明,土壤全磷(TP)、速效磷(Olsen-P)和二钙磷(Ca2-P)含量呈逐年增加趋势,而氯化钙磷(CaCl2-P)含量呈先降低再增加的趋势;与不施肥对照相比,有机物料投入尤其是滤泥配施能显著提高土壤全氮(TN)、TP、Olsen-P、CaCl2-P和Ca2-P含量,其次是甘蔗灰和农家肥配施处理;相关分析表明,CaCl2-P、Ca2-P和Olsen-P均与土壤交换性钙(Ca-ex)含量显著正相关;冗余分析(RDA)表明土壤TN、Ca-ex、有机碳(SOC)和土壤全钾(TK)含量是影响土壤磷组分的关键因子.高通量测序分析含有机磷矿化基因(含phoD基因)细菌群落结果表明,与不施肥对照相比,秸秆还田配施无机肥处理显著增加土壤含phoD基因细菌丰富度,但各处理间含phoD基因细菌群落结构无显著差异.RDA分析结果表明,土壤Ca-ex、TK、Olsen-P、pH和SOC是驱动含phoD基因细菌群落变化的关键因子.总体上看,无机肥配施滤泥、甘蔗灰和农家肥是广西喀斯特地区农田土壤较为合适的养分管理方式.研究可为喀斯特地区有机废弃资源利用与土壤磷素管理提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号