首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
ABSTRACT: A macroscale hydrologic model is developed for regional climate assessment studies under way in the southeastern United States. The hydrologic modeling strategy is developed to optimize spatial representation of basin characteristics while maximizing computational efficiency. The model employs the “grouped response unit” methodology, which follows the natural drainage pattern of the area. First order streams are delineated and their surface characteristics are tested so that areas with statistically similar characteristics can be combined into larger computational zones for modeling purposes. Hydrologic response units (HRU) are identified within the modeling units and a simple three‐layer water balance model, Soil and Water Assessment Tool (SWAT), is executed for each HRU. The runoff values are then convoluted using a triangular unit hydrograph and routed by Muskingum‐Cunge method. The methodology is shown to produce accurate results relative to other studies, when compared to observations. The model is used to evaluate the potential error in hydrologic assessments when using GCM predictions as climatic input in a rainfall‐runoff dominated environment. In such areas, the results from this study, although limited in temporal and spatial scope, appear to imply that use of GCM climate predictions in short term quantitative analyses studies in rainfall‐runoff dominated environments should proceed with caution.  相似文献   

2.
    
ABSTRACT

In this paper, an artificial neural network-based control strategy is proposed for low voltage DC microgrid (LVDC microgrid) with a hybrid energy storage system (HESS) to improve power-sharing between battery and supercapacitor (SC) to suit the demand-generation imbalance, maintain state-of-charge (SOC) within boundaries and thereby to regulate the dc bus voltage. The conventional controller cannot track the SCs current rapidly with the high-frequency component that will place dynamic stress on the battery, further resulting in shorter battery life. The significant advantage is that in the proposed control strategy, redirections of unwaged battery currents to SCs for fast compensations enhance battery life span. The proposed control strategy effectiveness was investigated by simulations, including a comparison of overshoot/undershoot and settling time in dc bus voltage with a conventional control strategy. The results have been experimentally verified by hardware-in-loop (HIL) on a field-programmable gate array (FPGA)-based real-time simulator.  相似文献   

3.
    
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   

4.
    
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   

5.
6.
    
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   

7.
ABSTRACT: A generalized unit hydrograph method is developed and evaluated for ungaged watersheds. A key component in this method is the value of a dimensionless storage coefficient. Procedures to estimate this coefficient are given using calibrated values from 142 rainfall-runoff events gaged in watershed located mainly in the Eastern US. Only limited success was obtained in predicting this storage coefficient. Thirty-seven, independent rainfall-runoff events were used to test the proposed technique. The generalized unit hydrograph predicted the observed runoff hydrographs fairly well with considerable improvement in accuracy over the SCS dimensionless unit hydrograph. Approximately one-half of test storms had percent errors in predicted peak flow rates that were less than 34 percent compared to percent error of 88 percent with the SCS method.  相似文献   

8.
    
ABSTRACT: The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms produce different unit hydrographs for a single watershed. Consequently, a design engineer usually develops a composite, or average, unit hydrograph based on several recorded storm events. Common methods for estimating this composite unit hydrograph include curve fitting, simple aggregation, and multistorm optimization techniques. This paper introduces a new method to perform aggregation of unit hydrographs. The method is an extension to the simple averaging technique, in which prior to averaging, the individual unit hydrograph time ordinates are normalized with respect to the average time to peak. The normalization method is compared to a simple averaging technique and two multistorm aggregation techniques at six rural watersheds in Alabama. The results indicate that on average the normalization method predicts runoff nearly as accurately as the multistorm techniques, and displays improvement for 60 percent of the storms tested when compared with the simple averaging technique.  相似文献   

9.
    
ABSTRACT: To adequately manage impacts of ongoing or future land use changes in a watershed, the magnitude of their hydrologic impacts needs to be assessed. A grid based daily streamflow model was calibrated with two years of observed streamflow data, using time periods when land use data are available and verified by comparison of model predictions with observed streamflow data. Streamflow data were separated into direct runoff and baseflow to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from 30 years of simulation results and the change in these ratios with urbanization shows that estimated annual direct runoff increased from 49.2 percent (1973) to 63.1 percent (1984) and 65.0 percent (1991), indicating the effects of urbanization are greater on direct runoff than on total runoff. The direct runoff ratio also varies with annual rainfall, with dry year ratios larger than those for wet years. This suggests that the impact of urbanization on areas that are sensitive to runoff ratios, such as stream ecosystems, might be more serious during drier years than in wetter years in terms of water quality and water yield. This indicates that sustainable base‐flow is important to maintaining sound stream ecosystems.  相似文献   

10.
ABSTRACT: Urbanization of a watershed degrades both the form and the function of the downstream aquatic system, causing changes that can occur rapidly and are very difficult to avoid or correct. A variety of physical data from lowland streams in western Washington displays the onset of readily observable aquatic-system degradation at a remarkably consistent level of development, typically about ten percent effective impervious area in a watershed. Even lower levels of urban development cause significant degradation in sensitive water bodies and a reduced, but less well quantified, level of function throughout the system as a whole. Unfortunately, established methods of mitigating the downstream impacts of urban development may have only limited effectiveness. Using continuous hydrologic modeling we have evaluated detention ponds designed by conventional event methodologies, and our findings demonstrate serious deficiencies in actual pond performance when compared to their design goals. Even with best efforts at mitigation, the sheer magnitude of development activities falling below a level of regulatory concern suggests that increased resource loss will invariably accompany development of a watershed. Without a better understanding of the critical processes that lead to degradation, some downstream aquatic-system damage is probably inevitable without limiting the extent of watershed development itself.  相似文献   

11.
  总被引:1,自引:0,他引:1  
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

12.
    
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   

13.
    
ABSTRACT: There is a growing need for water regulations in states traditionally managed by the riparian doctrine. Several states have passed water laws to control withdrawals from streams. Few, if any, however, have set up consistent and defensible methods for allocating water to users. This paper explores several methods for such allocations, examining each in detail and offering numerical examples that compare each on the basis of economic efficiency and effectiveness for maintaining critical stream‐flow standards. This work is part of a study to assess the vulnerability of Midwestern streams to climate change and, especially, surface supplied irrigation spawned by such climate change. The results suggest that it is possible to implement regulations that at once (1) are consistent with the riparian doctrine; (2) control the hydrological and ecological impacts of off stream withdrawals effectively; and (3) preserve the primary economic functions of those withdrawals, including minimizing economic risk. The results further suggest that trading of water permits improves the latter two objectives, but only if both the regulatory system and permit are well‐designed. On the other hand, in the absence of regulations, or under poorly designed regulations, streamflows, and therefore aquatic ecosystems, could be quite vulnerable.  相似文献   

14.
ABSTRACT: Rainfall data products generated with the national network of WSR-88D radars are an important new data source provided by the National Weather Service. Radar-based data include rainfall depth on an hourly basis for grid cells that are nominally 4 km square. The availability of such data enables application of improved techniques for rainfall-runoff simulation. A simple quasi-distributed approach that applies a linear runoff transform to grid-ded rainfall excess has been developed. The approach is an adaptation of the Clark conceptual runoff model, which employs translation and linear storage. Data development for, and results of, an initial application to a 4160 km2 watershed in the Midwestern U.S. are illustrated.  相似文献   

15.
ABSTRACT: The simple, empirical degree-day approach for calculating snowmelt and runoff from mountain basins has been in use for more than 60 years. It is frequently suggested that the degree-day method be replaced by the more physically-based energy balance approach. The degree-day approach, however, maintains its popularity, applicability, and effectiveness. It is shown that the degree-day method is reliable for computing total snowmelt depths for periods of a week to the entire snowmelt season. It can also be used for daily snowmelt depths when utilized in connection with an adequate snowmelt runoff model for computing the basin runoff. The degree-day ratio is shown to vary seasonally as opposed to being constant as is often assumed. Additionally, in order to evaluate the degree-day ratio correctly, the changing snow cover extent in a basin during the snowmelt season must be taken into account. It is also possible to combine the degree-day approach with a radiation component so that short time interval (<24 hours) computations of snowmelt depth can be made. When snowmelt input is transformed to basin output (runoff) by a snowmelt runoff model, there is little difference between the degree-day approach and a radiation-based approach. This is fortuitous because the physically-based energy balance models will not soon displace the degree-day methods because of their excessive data requirements.  相似文献   

16.
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds.  相似文献   

17.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

18.
    
Impacts of climate change on the severity and intensity of future droughts can be evaluated based on precipitation and temperature projections, multiple hydrological models, simulated hydrometeorological variables, and various drought indices. The objective of this study was to assess climate change impacts on future drought conditions and water resources in the Chesapeake Bay (CB) watershed. In this study, the Soil and Water Assessment Tool (SWAT) and the Variable Infiltration Capacity model were used to simulate a Modified Palmer Drought Severity Index (MPDSI), a Standardized Soil Moisture index (SSI), a Multivariate Standardized Drought Index (MSDI), along with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models for both historical and future periods (f1: 2020‐2049, f2: 2050‐2079). The results of the SSI suggested that there was a general increase in agricultural droughts in the entire CB watershed because of increases in surface and groundwater flow and evapotranspiration. However, MPDSI and MSDI showed an overall decrease in projected drought occurrences due to the increases in precipitation in the future. The results of this study suggest that it is crucial to use multiple modeling approaches with specific drought indices that combine the effects of both precipitation and temperature changes.  相似文献   

19.
ABSTRACT: This paper examines the performance of snowmelt-runoff models in conditions approximating real-time forecast situations. These tests are one part of an intercomparison of models recently conducted by the World Meteorological Organization (WMO). Daily runoff from the Canadian snowmelt basin Illecille. waet (1155 km2, 509–3150 m a.s.l.) was forecast for 1 to 20 days ahead. The performance of models was better than in a previous WMO project, which dealt with runoff simulations from historical data, for the following reasons: (1) conditions for models were more favorable than a real-time forecast situation because measured input data and not meteorological forecast inputs were distributed to the modelers; (2) the selected test basin was relatively easy to handle and familiar from the previous WMO project; and (3) all kinds of updating were allowed so that some models even improved their accuracy towards longer forecast times. Based on this experience, a more realistic follow-up project can be imagined which would include temperature forecasts and quantitative precipitation forecasts instead of measured data.  相似文献   

20.
    
Climate change projections for the Pacific Northwest (PNW) region of North America include warmer temperatures (T), reduced precipitation (P) in summer months, and increased P during all other seasons. Using a physically based hydrologic model and an ensemble of statistically downscaled global climate model scenarios produced by the Columbia Basin Climate Change Scenarios Project, we examine the nature of changing hydrologic extremes (floods and low flows) under natural conditions for about 300 river locations in the PNW. The combination of warming, and shifts in seasonal P regimes, results in increased flooding and more intense low flows for most of the basins in the PNW. Flood responses depend on average midwinter T and basin type. Mixed rain and snow basins, with average winter temperatures near freezing, typically show the largest increases in flood risk because of the combined effects of warming (increasing contributing basin area) and more winter P. Decreases in low flows are driven by loss of snowpack, drier summers, and increasing evapotranspiration in the simulations. Energy‐limited basins on the west side of the Cascades show the strongest declines in low flows, whereas more arid, water‐limited basins on the east side of the Cascades show smaller reductions in low flows. A fine‐scale analysis of hydrologic extremes over the Olympic Peninsula echoes the results for the larger rivers discussed above, but provides additional detail about topographic gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号