共查询到20条相似文献,搜索用时 11 毫秒
1.
Ashutosh S. Limaye T Matthew Boyington James F Cruise Anupama Bulusu Elizabeth Brown 《Journal of the American Water Resources Association》2001,37(3):709-722
ABSTRACT: A macroscale hydrologic model is developed for regional climate assessment studies under way in the southeastern United States. The hydrologic modeling strategy is developed to optimize spatial representation of basin characteristics while maximizing computational efficiency. The model employs the “grouped response unit” methodology, which follows the natural drainage pattern of the area. First order streams are delineated and their surface characteristics are tested so that areas with statistically similar characteristics can be combined into larger computational zones for modeling purposes. Hydrologic response units (HRU) are identified within the modeling units and a simple three‐layer water balance model, Soil and Water Assessment Tool (SWAT), is executed for each HRU. The runoff values are then convoluted using a triangular unit hydrograph and routed by Muskingum‐Cunge method. The methodology is shown to produce accurate results relative to other studies, when compared to observations. The model is used to evaluate the potential error in hydrologic assessments when using GCM predictions as climatic input in a rainfall‐runoff dominated environment. In such areas, the results from this study, although limited in temporal and spatial scope, appear to imply that use of GCM climate predictions in short term quantitative analyses studies in rainfall‐runoff dominated environments should proceed with caution. 相似文献
2.
E. C. Dickey J. K. Mitchell J. N. Scarborough 《Journal of the American Water Resources Association》1979,15(6):1753-1769
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships. 相似文献
3.
Jin‐Yong Choi Bernard A. Engel Suresh Muthukrishnan Jon Harbor 《Journal of the American Water Resources Association》2003,39(3):623-635
ABSTRACT: To adequately manage impacts of ongoing or future land use changes in a watershed, the magnitude of their hydrologic impacts needs to be assessed. A grid based daily streamflow model was calibrated with two years of observed streamflow data, using time periods when land use data are available and verified by comparison of model predictions with observed streamflow data. Streamflow data were separated into direct runoff and baseflow to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from 30 years of simulation results and the change in these ratios with urbanization shows that estimated annual direct runoff increased from 49.2 percent (1973) to 63.1 percent (1984) and 65.0 percent (1991), indicating the effects of urbanization are greater on direct runoff than on total runoff. The direct runoff ratio also varies with annual rainfall, with dry year ratios larger than those for wet years. This suggests that the impact of urbanization on areas that are sensitive to runoff ratios, such as stream ecosystems, might be more serious during drier years than in wetter years in terms of water quality and water yield. This indicates that sustainable base‐flow is important to maintaining sound stream ecosystems. 相似文献
4.
Norman L. Miller Kathy E. Bashford Eric Strem 《Journal of the American Water Resources Association》2003,39(4):771-784
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century. 相似文献
5.
Gregory J. McCabe Mark A. Ayers 《Journal of the American Water Resources Association》1989,25(6):1231-1242
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently. 相似文献
6.
Brian C. Dietterick James A. Lynch Edward S. Corbett 《Journal of the American Water Resources Association》1999,35(2):457-468
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept. 相似文献
7.
James A. Ryan 《Journal of the American Water Resources Association》1979,15(2):461-472
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality. 相似文献
8.
Mark A. Snyder Lisa C. Sloan Jason L. Bell 《Journal of the American Water Resources Association》2004,40(3):591-601
ABSTRACT: Using a regional climate model (RegCM2.5), the potential impacts on the climate of California of increasing atmospheric CO2 concentrations were explored from the perspective of the state's 10 hydrologic regions. Relative to preindustrial CO2 conditions (280 ppm), doubled preindustrial CO2 conditions (560 ppm) produced increased temperatures of up to 4°C on an annual average basis and of up to 5°C on a monthly basis. Temperature increases were greatest in the central and northern regions. On a monthly basis, the temperature response was greatest in February, March, and May for nearly all regions. Snow accumulation was significantly decreased in all months and regions, with the greatest reduction occurring in the Sacramento River region. Precipitation results indicate drier winters for all regions, with a large reduction in precipitation from December to April and a smaller decrease from May to November. The result is a wet season that is slightly reduced in length. Findings suggest that the total amount of water in the state will decrease, water needs will increase, and the timing of water availability will be greatly perturbed. 相似文献
9.
Ching‐pin Tung 《Journal of the American Water Resources Association》2001,37(1):167-176
ABSTRACT: This study presents a methodology to evaluate the vulnerability of water resources in the Tsengwen creek watershed, Taiwan. Tsengwen reservoir, located in the Tsengwen creek watershed, is a multipurpose reservoir with a primary function to supply water for the ChiaNan Irrigation District. A simulation procedure was developed to evaluate the impacts of climate change on the water resources system. The simulation procedure includes a streamflow model, a weather generation model, a sequent peak algorithm, and a risk assessment process. Three climate change scenarios were constructed based on the predictions of three General Circulation Models (CCCM, GFDL, and GISS). The impacts of climate change on streamflows were simulated, and, for each climate change scenario, the agricultural water demand was adjusted based on the change of potential evapotranspiration. Simulation results indicated that the climate change may increase the annual and seasonal streamflows in the Tsengwen creek watershed. The increase in streamflows during wet periods may result in serious flooding. In addition, despite the increase in streamflows, the risk of water deficit may still increase from between 4 and 7 percent to between 7 and 13 percent due to higher agricultural water demand. The simulation results suggest that the reservoir capacity may need to be expanded. In response to the climate change, four strategies are suggested: (1) strengthen flood mitigation measures, (2) enhance drought protection strategies, (3) develop new water resources technology, and (4) educate the public. 相似文献
10.
Kenneth D. Frederick Gregory E. Schwarz 《Journal of the American Water Resources Association》1999,35(6):1563-1583
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case. 相似文献
11.
ABSTRACT: The performance of a hydrological model is usually assessed first by visual inspection of the measured and computed hydrographs. Numerous statistical criteria are available for numerical evaluations of model accuracy in each single year, in a particular season of the year, or in a sequence of years or seasons. In the last case, the problem of computing the overall result has to be considered. If too many criteria are used and the criteria are switched frequently, an assessment of a model's performance becomes difficult for a potential user. Therefore, this paper concentrates on just three criteria and their combined evaluation: The Nash-Sutcliffe coefficient, which compares the model computed discharge with the average measured discharge; the “coefficient of gain from daily means” in which a uniform average discharge is replaced by daily average discharges; and the volumetric difference between the total measured and computed runoff. The three criteria are combined in a three dimensional representation that allows intercomparisons of model performance in a single diagram. 相似文献
12.
Catherine Denault Robert G. Millar Barbara J. Lence 《Journal of the American Water Resources Association》2006,42(3):685-697
ABSTRACT: Stationarity of rainfall statistical parameters is a fundamental assumption in hydraulic infrastructure design that may not be valid in an era of changing climate. This study develops a framework for examining the potential impacts of future increases in short duration rainfall intensity on urban infrastructure and natural ecosystems of small watersheds and demonstrates this approach for the Mission/Wagg Creek watershed in British Columbia, Canada. Nonstationarities in rainfall records are first analyzed with linear regression analysis, and the detected trends are extrapolated to build potential future rainfall scenarios. The Storm Water Management Model (SWMM) is used to analyze the effects of increased rainfall intensity on design peak flows and to assess future drainage infrastructure capacity according to the derived scenarios. While the framework provided herein may be modified for cases in which more complex distributions for rainfall intensity are needed and more sophisticated stormwater management models are available, linear regressions and SWMM are commonly used in practice and are applicable for the Mission/Wagg Creek watershed. Potential future impacts on stream health are assessed using methods based on equivalent total impervious area. In terms of impacts on the drainage infrastructure, the results of this study indicate that increases in short duration rainfall intensity may be expected in the future but that they would not create severe impacts in the Mission/Wagg Creek system. The equivalent levels of imperviousness, however, suggest that the impacts on stream health could be far more damaging. 相似文献
13.
Lauren E. Hay Robert L. Wilby George H. Leavesley 《Journal of the American Water Resources Association》2000,36(2):387-397
ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation‐runoff model. Results from this study show that, in the basins tested, a precipitation‐runoff model can simulate realistic runoff series for current conditions using statistically down‐scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution. 相似文献
14.
James F. Cruise Ashutosh S. Limaye Nassim Al-Abed 《Journal of the American Water Resources Association》1999,35(6):1539-1550
ABSTRACT: An assessment of current and future water quality conditions in the southeastern United States has been conducted using the EPA BASINS GIS/database system. The analysis has been conducted for dissolved oxygen, total nitrate nitrogen and pH. Future streamflow conditions have been predicted for the region based on the United Kingdom Hadley Center climate model. Thus far, the analyses have been conducted at a fairly coarse spatial scale due to time and resource limitations. Two hydrologic modeling techniques have been employed in future streamflow prediction: a regional stochastic approach and the application of a physically based soil moisture model. The regional model has been applied to the entire area while the physically based model is being used at selected locations to enhance and support the stochastic model. The results of the study reveal that few basins in the southeast exhibit dissolved oxygen problems, but that several watersheds exhibit high nitrogen levels. These basins are located in regions of intense agricultural activity or in proximity to the gulf coast. In many of these areas, streamflow is projected to decline over the next 30–50 years, thus exacerbating these water quality problems. 相似文献
15.
M. L. Shelton 《Journal of the American Water Resources Association》2001,37(4):1041-1052
ABSTRACT: A 2xCO2 climate and runoff in the Upper Deschutes Basin in central Oregon is simulated using a mesoscale atmospheric model and a watershed model that incorporates spatial variability of the runoff process. A nine‐year control climate monthly time series provides a benchmark for assessing changes related to a warmer and wetter 2xCO2 climate. Potential evapotranspiration is increased by 23 percent and snow water equivalent is reduced by 59 percent in the 2xCO2 climate. Annual runoff increases by 23 percent, while November runoff increases by 55 percent. The average maximum monthly runoff is in May for both the control climate and 2xCO2 climate, but in five of the nine years the monthly maximum runoff for the 2xCO2 climate occurs two to five months earlier than for the control climate. The minimum runoff month is one to five months earlier in the 2xCO2 climate in seven of the nine years, and the month of average minimum runoff is March in the control climate and November in the 2xCO2 climate. Since precipitation is greatest in December in both the control climate and 2xCO2 climate, the earlier maximum and minimum runoff for a 2xCO2 climate indicates greater watershed sensitivity to temperature than to precipitation. 相似文献
16.
Bruce N. Wilson J. William Brown 《Journal of the American Water Resources Association》1992,28(2):397-408
ABSTRACT: A generalized unit hydrograph method is developed and evaluated for ungaged watersheds. A key component in this method is the value of a dimensionless storage coefficient. Procedures to estimate this coefficient are given using calibrated values from 142 rainfall-runoff events gaged in watershed located mainly in the Eastern US. Only limited success was obtained in predicting this storage coefficient. Thirty-seven, independent rainfall-runoff events were used to test the proposed technique. The generalized unit hydrograph predicted the observed runoff hydrographs fairly well with considerable improvement in accuracy over the SCS dimensionless unit hydrograph. Approximately one-half of test storms had percent errors in predicted peak flow rates that were less than 34 percent compared to percent error of 88 percent with the SCS method. 相似文献
17.
Daniel B. Fagre Peter L. Comanor Joseph D. White F Richard Hauer Steven W. Running 《Journal of the American Water Resources Association》1997,33(4):755-765
ABSTRACT: We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snow-pack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management. 相似文献
18.
L. Ruby Leung Mark S. Wigmosta 《Journal of the American Water Resources Association》1999,35(6):1463-1471
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small. 相似文献
19.
Jennifer K. Holman‐Dodds A. Allen Bradley Kenneth W. Potter 《Journal of the American Water Resources Association》2003,39(1):205-215
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins. 相似文献
20.
Mark C. Stone Rollin H. Hotchkiss Carter M. Hubbard Thomas A. Fontaine Linda O. Mearns Jeff G. Arnold 《Journal of the American Water Resources Association》2001,37(5):1119-1129
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis. 相似文献