首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long‐term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end‐states from leave‐in‐place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long‐term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site‐specific evaluation © 2007 Wiley Periodicals, Inc.  相似文献   

3.
Remediation responsibilities of the U.S. Department of Energy (DOE) encompass a vast national complex of highly contaminated former weapons facilities. During the mid‐1990s, DOE announced its intentions to consolidate some waste types at specific sites. At about the same time, organizations and public officials around DOE sites urged a National Dialogue, designed to develop comprehensive solutions to the Department's needs for waste disposition ( transportation, treatment, and storage). Recent opposition from citizens and elected officials in Nevada and Washington State has presented obstacles to DOE's plans. Additionally, chairs of nine site‐specific advisory boards recommended that DOE support a National Stakeholder Forum, similarly designed to develop solutions to disposition needs. This article reviews the chronology of DOE's disposition efforts, along with public and state reactions and recommendations. © 2006 Wiley Periodicals, Inc.  相似文献   

4.
The U.S. Department of Energy (DOE) is beginning major environmental restoration projects of both active and inactive sites throughout the United States. The problems at the sites include contaminated soils, groundwater and surface waters, structures, and old waste disposal areas. IT Corporation, under the direction of the Office of Independent Cost Estimating (OICE) for DOE, developed a list of environmental problems at the sites and probable cleanup technologies and techniques that could be used. Estimated unit costs were then developed for these cleanup technologies, using available data and references. Some procedures developed were common to many or all cleanup projects. These included site characterization, remedial investigation (RI), feasibility studies (FS), and the closure/post-closure phase. The article will focus on cost estimating of the closure/post-closure phase of a cleanup project. The cost data provided are for budget level or check estimates. Site-specific conditions as well as items peculiar to the environmental industry, such as governmental regulations and community relations, can influence both the cost and duration of a cleanup project.  相似文献   

5.
Worldwide, agencies with high levels of contamination are faced with decisions about remediation and restoration. These decisions should be informed by future land use and long‐term stewardship goals. In the United States, the Department of Energy has lands in some 34 states that require cleanup. They are involved in massive remediation and restoration efforts on lands from the Cold War legacy and wish to reduce their overall footprint. Understanding future land use preferences is essential for determining the nature and degree of remediation and restoration. The objective of this study was to examine future land use preferences for the Department of Energy's Los Alamos National Laboratory as a function of ethnicity for attendees at the Los Alamos Gun Show in New Mexico (1999), and to determine whether their own activity influences future land use preferences. The highest preferred future land uses for Los Alamos National Laboratory were hiking, camping, National Environmental Research Park, and birdwatching, followed by hunting and fishing. Increased nuclear waste storage and building homes and factories were rated the lowest. Further, hiking and camping were rated higher than at two other DOE sites. There were few ethnic differences, although American Indians rated camping, hiking, building houses, and returning the land to American Indians higher than did others, and Hispanics rated using it for a preserve as a higher preferred land use than all others. The differences, however, were not great. Relative ratings for using the land for hunting and fishing were directly related to individual frequency of hunting and fishing for both whites and Hispanics, indicating that people perceive the importance of land use by how they want to use it. Ratings for hiking and camping were not related to the number of days people hiked and camped, suggesting these are general preferences overall. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
We examined site‐specific advisory board (SSAB) minutes and local newspaper coverage of the Fernald, Hanford, Idaho, Oak Ridge, Rocky Flats, and Savannah River sites of the U.S. Department of Energy (US DOE) in order to determine the importance of risk‐related issues related to remediation and other forms of environmental management. About one‐third of SSAB issues were risk‐related, and these were disproportionately major issues at meetings. The media focused on risks associated with remediation and other forms of waste management. The analysis implies that contractors and government officials need to establish and maintain communications with advisory panels and accentuate these contacts well in advance of contemplated new actions. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
The specific aim of this funded research project was to examine and evaluate the efficiency and the effectiveness of the municipal solid waste collection and transportation system in the State of Kuwait. The contract resources of the seven contracting firms, the annual contract budgets, and the district area and population of each service contract are presented. Service efficiency and effectiveness indicators for each collection/disposal contract are also computed and discussed. The cost of collection and transportation of household waste in Kuwait is also compared with those of a number of urban areas in other nations. The low energy and manpower costs are mainly responsible for the favorable cost of management, collection and transportation of residential waste in Kuwait.  相似文献   

8.
The Consortium for Risk Evaluation with Stakeholder Participation (CRESP) was asked by the United States Department of Energy (US DOE) to consider the root causes of remediation projects that fail to entirely achieve their goals and then to offer suggestions to assist the Department. To begin this project, CRESP held several meetings at which the group defined problematic outcomes, the early symptoms of problematic outcomes, and the root causes of failing to meet expectations. The five root causes are complex science, engineering, and technology; ambiguous economics; project management shortcomings; political processes and credibility; and history and organizational culture. This article, while focusing on the US DOE, provides a larger context for many remediation projects that have failed to entirely live up to their sponsors' expectations. © 2007 Wiley Periodicals, Inc.  相似文献   

9.
Waste vitrification technology has largely been developed by the United States Department of Energy (DOE). Numerous vendors offer vitrification units, and a number of commercial and large pilot applications have been made. Nevertheless, the industry is still in its infancy and does not dominate any waste treatment niche. DOE funding of vitrification technology development is nearing an end, and DOE waste treatment is being privatized, with private bidders selecting the technologies and offering to treat wastes for a per-unit fee. Thus, the DOE market is shifting from a cost-plus, largely R&D environment to a fixed-fee environment in which vendors and waste treatment contractors must accept technological risks. Significant quantities of DOE waste are still uncommitted, but the number of vendors is larger than the market can possibly sustain. Domestic private sector opportunities are limited and vendors are looking to foreign markets with less mature treatment capacity and growing demand.  相似文献   

10.
Groundwater monitoring at Department of Energy's (DOE's) Hanford Site is a large, expensive undertaking serving multiple purposes, including compliance with regulations and DOE orders, remediation efforts under CERCLA, and sitewide risk evaluations. Like most large Federal facilities, the monitoring program currently in place has evolved and grown overtime as new requirements were established and groups were assigned to address them. DOE and its regulators simultaneously awakened to the fact that there was a need to reevaluate the monitoring activities at Hanford, to better integrate the program, to avoid duplicative sampling, to improve everyone's understanding of the performance of the network, and to evaluate whether adequate data could be collected for lower cost. This paper describes the approch that was developed to guide the rethinking effort with direct and extensive involvement of DOE, EPA, Washington Department of Ecology, Indian Tribes, and DOE Contractors, and how this approach was applied to a large portion of the site. Both the human element of the process (cultural change), as well as some of the technical details associated with the effort, including a flexible application of EPA's data quality objectives process, are discussed.  相似文献   

11.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
US Department of Energy (US DOE) responsibilities for its former national atomic weapons complex include remediation of the Rocky Flats facility near Denver, Colorado. In 1993, the site's primary mission shifted from “production'' of plutonium components for atomic weapons to cleanup of extensive radioactive and chemical contamination representing the legacy of production activities. Remediation was governed by the agreements between the US DOE as the responsible party and the US Environmental Protection Agency and the state of Colorado as joint regulators. In 1995, the Rocky Flats Future Use Working Group issued its final report, recommending among other features that long‐term cleanup reduce contamination levels to background. This article describes the circumstances that led the US DOE to complete the Rocky Flats cleanup more quickly and makes comparisons to the situation at the US DOE's Hanford site. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Near surface disposal facility design and management are examined and compared using a systems approach that defines facility performance as a function of three components (or subsystems): the disposal facility design (cover systems and bottom liners); the properties of the waste (waste composition, waste form and waste package); and the site‐specific environmental features (climate, geology, and hydrology). We report an evaluation of five DOE near surface disposal facility case studies, selected to provide a “representative” sample that included disposal sites with a range of waste and environmental characteristics across the DOE. The facilities selected were the Savannah River E‐Area Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. ©2015 Wiley Periodicals, Inc.  相似文献   

14.
The Formerly Utilized Sites Remedial Action Program (FUSRAP) covers inactive commercial, federal, and university facilities that once supported activities of the Manhattan Project or Atomic Energy Commission. Current responsibilities, established by a Memorandum of Understanding (MOU), are split between the U.S. Department of Energy (US DOE) and the U.S. Army Corps of Engineers. The MOU distinguishes between facilities remediated before 1997 (“completed” sites) and those where remediation remained to be completed at that time. This article evaluates activities conducted at completed sites with regard to considerations for long‐term stewardship, which is defined by the US DOE as all activities necessary to protect human health and the environment after remediation is considered complete. Experience with these FUSRAP sites provides “lessons learned” for the requirements of satisfactory long‐term stewardship. © 2007 Wiley Periodicals, Inc.  相似文献   

15.
This article discusses a process for finding insights that will allow federal agencies and environmental professionals to more effectively manage contaminated sites. The process is built around what Etzioni (1968) called mixed‐scanning, that is, perpetually doing both comprehensive and detailed analyses and periodically re‐scanning for new circumstances that change the decision‐making environment. The article offers a checklist of 127 items, which is one part of the multiple‐stage scanning process. The checklist includes questions about technology; public, worker, and ecological health; economic cost and benefits; social impacts; and legal issues. While developed for a DOE high‐level radioactive waste application, the decision‐making framework and specific questions can be used for other large‐scale remediation and management projects. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
Residents who lived within 50 miles of one of six major US Department of Energy nuclear waste sites were asked in 2005 and again in 2010 to rate environmental management options. Respondents expressed strong preference for continuously sampling the air and water, monitoring worker health, and providing training and equipment to local responders. They strongly supported some site restrictions, such as making sure that the federal government owns the site until no more hazards are present, keeping visitors and recreational users off the site, and requiring government officials to report information to community representatives. The public was much more equivocal about other options, such as restricting new nuclear‐related activities and requiring site managers to live near sites. The authors summarize factors that lead to these public preferences and discuss five population types encountered at these and perhaps other waste management sites. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
The U.S. Department of Energy's (US DOE's) responsibilities for its former national nuclear weapons complex include remediation of the Hanford Site in Washington State. In 1989, the site's primary mission shifted from nuclear weapons material production to cleanup of the extensive radioactive and chemical contamination that represented the production legacy. Cleanup is governed by the Tri‐Party Agreement (TPA), between the US DOE, as responsible party, and the U.S. Environmental Protection Agency and Washington State Department of Ecology, as joint regulators. Nearly 20 years have passed since the TPA was signed, but the Hanford remediation is expected to require decades longer. This article covers the cleanup progress to date and challenges that remain, particularly from millions of gallons of highly radioactive liquid wastes and proposals to bring new wastes to Hanford. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Expert software-based decision support is speeding the process of defining environmental hazards and identifying remedial responses for the U.S. Department of Energy's (DOE) hazardous waste cleanup projects throughout the United States. Pacific Northwest Laboratories' (PNL) Remedial Action Assessment System (RAAS), and associated Technology Information System (TIS), written for Macintosh computers (soon for PC-compatible computers), sort through an encyclopedic data base to help environmental engineers prepare the most appropriate remedial strategy. The system has been available to DOE and other U.S. government engineers since last year and will soon be commercially available.  相似文献   

20.
The synthetic chemical, 1,4‐dioxane, is classified by the U.S. Environmental Protection Agency (EPA) as a probable human carcinogen. Between 2013 and 2015, the EPA detected 1,4‐dioxane in public drinking water supplies in 45 states at concentrations up to 33 µg/L and in groundwater from releases at hazardous waste sites across the United States. Although a Federal maximum contaminant level drinking water standard has not yet been proposed, state‐specific standards and criteria are as low as 0.3 µg/L. 1,4‐Dioxane is a recalcitrant chemical in that applications of conventional treatment technologies have had limited success in reducing concentrations in water to meet current and proposed health‐protective levels. Although mainly used as a stabilizer for the solvent 1,1,1‐trichloroethane, it has been used in other industrial processes and has been detected in a variety of consumer products, such as foods, pharmaceuticals, cosmetics, and detergents. The high aqueous solubility of 1,4‐dioxane coupled with limited solubility of chlorinated solvents typically found in conjunction with 1,4‐dioxane contamination is the primary reason for its treatment challenges. In the last several years, an alternative, cost‐effective technology has been developed that has demonstrated treatment to levels significantly lower than the Federal and state‐specific goals. This article provides a Federal and state‐by‐state summary of 1,4‐dioxane‐specific drinking water and groundwater concentration criteria and qualitative comparison of the effectiveness of conventional treatment technologies compared to the effectiveness of an alternative treatment technology. A case study is also provided to present details regarding the application of an alternative treatment technology at an active groundwater remediation site in California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号