首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
During removal of an industrial landfill in Folsom, California, fill material was excavated and processed through a mechanical screening plant to segregate soil from construction and demolition debris. The segregated soil was stockpiled and analyzed for a wide range of chemical groups to determine if the soil could be backfilled on‐site. The analytical results indicated many of the stockpiles had concentrations of polycyclic aromatic hydrocarbons (PAHs) that exceeded US EPA Regional Screening Levels, and a large quantity of soil was initially classified as requiring off‐site disposal at considerable cost. Because PAHs are ubiquitous in urban settings and the landfill did not contain a significant source of PAHs, development of a site‐specific PAH cleanup goal was proposed to regulators. Cal/EPA guidance for using on‐site data to develop a background threshold for metals was applied to the development of the PAH cleanup goal. The Cal/EPA approach involves demonstrating whether the data belong to a single population or multiple populations based on data distribution tests and probability plots. This article explains the statistical and graphical methods that were used to demonstrate that the Cal/EPA approach was valid for PAHs and that the calculated cleanup level was consistent with published anthropogenic background levels of PAHs in California and across the United States. The site‐specific PAH cleanup goal enabled most of the soil to be backfilled on‐site, saving about $227,000 in transportation and disposal costs, and regulators subsequently approved unrestricted future use of the property. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) and metal(loid) mass flux estimates and forensic assessment using PAH diagnostic ratios were used to inform remediation decision making at the Sydney Tar Ponds (STPs) and Coke Ovens cleanup project in eastern Canada. Environmental effects monitoring of surface marine sediments in Sydney Harbor indicated significantly higher PAH concentrations during the first year of remediation monitoring compared to baseline. This was equivalent to PAH loadings of ~2,000 kg over a 15‐month period. Increases in sediment PAH concentrations raised serious concerns for regulators, who requested cessation of remediation activities early in the $400 M (CAD) project. Historically, the STPs were reported as the primary source of PAH contamination in Sydney Harbor with estimated discharges of 300 to 800 kg/year between 1989 and 2001. Mass flux estimates of PAHs and metal(loid)s and PAH diagnostic ratios were used to evaluate if increases in PAH concentrations in marine sediments were the result of the STPs remediation activities. PAH mass flux estimates approximated that 17 to 97 kg/year were discharged from the STPs during three years of remediation and were corroborated by an independent PAH flux estimate of 119 kg in year 1. PAH fluxes to the Sydney Harbor were mostly surface water derived, with groundwater contributing negligible quantities (0.002–0.005 kg/year). Fluxes of metal(loid)s to harbor sediments were stable or declining across all years and were mirrored in sediment metal(loid) concentrations, which lacked temporal variation, unlike total PAH concentrations. Flux results were also corroborated using PAH diagnostic ratios, which found a common source of PAHs. Coal combustion was likely the principal source of PAHs and not migration from the STPs during remediation. Although short‐term residual sediment PAH increases during onset of remediation raised concerns for regulators, calls for premature cessation of remediation early in the project were unwarranted based on only one year of monitoring data. Mass flux estimates and forensic assessments using PAH diagnostic ratios proved useful tools to inform remediation decision making that helped environmental protection and reduced costs associated with lost cleanup time.  相似文献   

3.
The results from measuring PAH and metal contamination together with macroinvertebrate communities at 62 headwater stream sites gives a significant insight into the range and scale of contamination. Monitoring streambed sediments at 62 sites from rural to inner city and in industrial locations presented a unique opportunity to distinguish the conditions that enhance pollution runoff at sites that are less obviously `at risk' and to compare these results with sites of expected high contamination, for example in industrial areas and at motorway junctions. We used pCCA (partial Canonical Correspondence Analysis) to tease out the relationships between individual macroinvertebrate families and specific metal and PAH contaminants, and showed that it is not always the metals and PAHs with the greatest total concentrations that are doing the damage to the ecology. Ni and Zn are the critical metals, while benzo(b)fluoranthene, anthracene and fluoranthene are the most contaminating PAHs. The results identify previously unrecognized `high risk' pollution sources, lay byes used for commercial parking, on-street residential parking areas, and the junctions at the bottom of hills with traffic lights, where surface runoff feeds rapidly to the streams. While this study looks at sites across Yorkshire, UK, it clearly has a broader significance for understanding contamination risks from diffuse runoff as a prerequisite for effective sustainable urban drainage system (SUDS) agendas and the protection of urban stream ecology.  相似文献   

4.
With the emergence of risk‐based corrective action decisions, there is interest in the use of more natural techniques that may be as protective as the traditional removal, landfill, or capping approaches for impoundment closure. The use of phytoremediation is one of the more promising techniques. This article presents the results of a three‐year field‐pilot phytoremediation study that involved the use of plants to enhance sludge dewatering at an inactive natural gas‐cracking wastewater lagoon. The dewatering was accompanied by contaminant reduction of benzene, toluene, xylene (BTX), and naphthalene concentrations to below the cleanup goals. Meanwhile, the concentration reductions of three or more ring polynuclear aromatic hydrocarbons (PAHs) varied between 30 percent and 60 percent, except for dibenz[a,h]anthracene. The residual PAHs in the sludge are not leaching. Parallel laboratory studies suggest a reduced PAH availability and mobility in the unsaturated zone sludge. © 2002 Wiley Periodicals, Inc.  相似文献   

5.
We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.  相似文献   

6.
Soil moisture content and temperature in a contaminated soil biopile equipped with immobilized microbe bioreactors (IMBRs) were optimized during ex situ bioremediation at a creosote‐contaminated Superfund site. Efficiency of remediation during warm summer months without soil‐temperature and moisture optimization was compared with that of cold winter months when corrective measures were applied. Significant reduction (35 percent) in total polycyclic aromatic hydrocarbons (PAHs) was observed, compared to 3.97 percent without corrective measures (p < 0.05). Kinetic rates (KRs) for total PAH removal were significantly enhanced from 3.93 to 50.95 mg/kg/day. KRs for removal of high molecular mass four‐to‐six‐ring PAHs were also significantly enhanced from 70.29 mg/kg/day to 97.45 mg/kg/day ( p < 0.05). Bioremediation of two‐ and three‐ring PAHs increased significantly from 15 percent to 40 percent. Benzo[a]pyrene toxicity equivalent mass (BaPequiv) was significantly reduced by 48 percent with KR of 0.47 mg/kg/day as compared to 22 percent with KR of 0.14 mg/kg/day (p < 0.05). Soil moisture content was enhanced from 15.7 percent to 41.4 percent. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
Stormwater runoff from the University of California, Davis/U.S. Department of Energy Laboratory for Energy‐Related Health Research (UCD/US DOE LEHR) Superfund site located on the University of California campus in Davis, California, has been found to contain over 500 ng/L of total recoverable mercury, which is about ten times the California Toxics Rule criterion. This stormwater runoff is discharged to Putah Creek, which is Clean Water Act Section 303(d) listed as impaired for excessive mercury bioaccumulation in edible fish. A discussion is presented on the potential impact of the mercury in stormwater runoff from LEHR leading to excessive bioaccumulation of mercury in Putah Creek fish. The mercury in the stormwater runoff is derived from former flooding of the soils near the creek, which contains mercury derived from abandoned upstream mercury mines located in the Coast Range Vaca Hills to the west of LEHR. The implications of this situation for implementing a Total Maximum Daily Load (TMDL) to control mercury in stormwater runoff to Putah Creek are presented. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Enhanced biodegradation of creosote-contaminated soil   总被引:2,自引:0,他引:2  
Bioremediation, a viable option for treatment of cresote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.  相似文献   

9.
Amounts of readily soluble nutrients on asphalt parking lot surfaceswere measured at four locations in metropolitan Phoenix, Arizona, U.S.A. Using a rainfall simulator, short intense rainfall events were generated to simulate `first flush' runoff. Samples were collected from 0.3 m2 sections of asphalt at 8 to 10 sites on each of four parkinglots, during the pre-monsoon season in June-July 1998 and analyzed for dissolved NO3 --N, NH4 +-N, soluble reactive phosphate (SRP), and dissolved organic carbon (DOC). Runoff concentrations varied considerably for NO3 --N and NH4 +-N (between 0.1 and 115.8 mg L-1) and DOC (26.1 to 295.7 mg L-1), but less so for SRP (0.1 to 1.0 mg L-1), representing average surface loadings of 191.3, 532.2, and 1.8 mg m-2 respectively. Compared with similar data collected from undeveloped desert soil surfaces outside the city, loadings of NO3 --N and NH4 +-N on asphalt surfaces were greater by factors of 91 and 13, respectively. In contrast, SRP loads showed little difference between asphalt and desert surfaces. Nutrient fluxes in runoff from a storm that occurred shortly after the experiments were used to estimate input-output budgets for 3 of the lots under study. Measured outputs of DOC and SRP were similar to those predicted using rainfall and experimentally determined surface loadings, but for NH4 +-N and particularly for NO3 --N, estimated rainfall inputs and surface runoff were significantly higher than exports in runoff. This suggests that parking lots may be important sites for nutrient accumulation and temporary storage in arid urban catchments.  相似文献   

10.
A field study was conducted to compare the effectiveness of land treatment and mesophilic composting in removing aged polycyclic aromatic hydrocarbons (PAH) from soil. The soil composting treatment, which had 20 percent (w/w) fresh organic matter incorporated into the soil, reached mesophilic temperatures of 45 to 50°C at week 3–4 and was effective in reducing PAH from 2240 mg/kg to 120 mg/kg after 224 days of treatment. Conventional land treatment with and without added cow manure (5 percent w/w) was less effective in removing the PAH from the soil than was the mesophilic soil composting treatment. In a parallel laboratory trial, PAH concentrations were reduced below 500 mg/kg (the target cleanup concentration for the site) when the contaminated soil was amended with 20 to 30 percent (w/w) fresh organic matter after 186 days of treatment. PAH degradation was lower in the laboratory trial compared with the field trial and no self-heating of soil was demonstrated in the laboratory. Based on the relatively high total heterotrophic and naphthalene-degrading microbial populations in the nonsterile treatments, it was apparent that the absence of microorganisms was unlikely to have limited the biodegradation of PAH in the current study. Fresh organic matter amendments of green tree waste and cow manure, regular mixing of the compost, and maintenance of moisture by regular watering were critical factors in achieving the target PAH concentrations.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the global environment and are subsequently transported into aquatic sediments. As PAHs are formed by various processes, source identification using diagnostic ratios can provide insight to PAH emission sources to distinguish between pyrogenic and petrogenic PAH sources. PAH diagnostic ratios were applied as a forensic source apportionment technique to assess aggregate historical sediment data from 31 small craft harbors (SCHs) across Nova Scotia, Canada. Multiple diagnostic ratios suggest that PAHs present in Nova Scotia SCH sediments are pyrogenic (combustion) in origin, while consistently suggesting that coal‐related PAH sources are potential dominant specific sources. National Institute of Standards and Technology Standard Reference Materials (SRMs) were used as reference for coal tar, urban dust, and diesel exhaust particulates in ratio applications. The SRM for coal tar was most similar to Nova Scotia SCH sediments in multiple ratio applications. Diagnostic ratio results were corroborated by comparing the PAH profile of sediments to source profiles from the literature. Results indicate that Nova Scotia SCH sediments follow global trends by exhibiting a dominant pyrogenic PAH signature, and the specific coal‐related PAH signature of Nova Scotia SCH sediments may be influenced by contamination inputs related to historical industrial coal mining and combustion activities in the province.  相似文献   

12.
Although production of sewage sludge increases every year, its proper treatment has only been recently raised as a new issue, as current landfill and ocean dumping arrangements are expected to become increasingly difficult to manage in the future. The Korean Ministry of Environment plans to diversify its processing facilities and expand its processing systems by 2011, with the purpose of processing all sludge produced in Korea. According to this plan, incineration (including incineration of municipal wastes) will process 30% of the entire sewage sludge throughout the country in 2011. This study reviews the characteristics of PAH, which is one of the organic substances found in sewage sludge during the incinerating process. The total amount of PAH produced from sewage sludge incineration was found to be 6.103 mg/kg on average, and investigation performed on 16 PAHs of inlets and outlets of the air control devices at five full-scale incineration facilities showed that concentrations of the PAHs on the inlet and on the outlet ranged from 3.926 to 925.748 microg/m(3) and from 1.153 to 189.449 microg/m(3), respectively. In the case of the incineration facility fed with municipal waste (95%) and sewage sludge (5%), the total of the PAH emissions concentration was higher than that found at the incineration facilities used exclusively to treat sewage. The combustion of waste vinyl and plastics contained in municipal waste fed into the facility might contribute to the high levels of PAHs in the stack gas. However more investigation is needed on the production mechanism of PAHs at different operating conditions of the incineration facilities, such as the types of waste, and other relevant factors.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are mutagenic, carcinogenic, and toxic to living organisms. Here, the ability and effectiveness of selected bacteria isolated from an oil‐contaminated area in biodegrading PAHs were evaluated, and the optimal conditions conducive to bacterial PAH biodegradation were determined. Of six bacterial isolates identified based on their 16S rRNA sequences, Planomicrobium alkanoclasticum could subsist on and consume nearly all hydrocarbons according to the 2,6‐dichlorophenolindophenol assay. The efficacy of this isolate at PAH biodegradation was then empirically confirmed. After 30 days of incubation, P. alkanoclasticum degraded 90.8% of the 16 PAH compounds analyzed and fully degraded eight of them. The optimum P. alkanoclasticum growth conditions were 35°C, pH 7.5, and NaNO3 as the nitrogen source. Under these biostimulant conditions, P. alkanoclasticum degraded 91.4% of the total PAH concentration and completely decomposed seven PAHs after 15 days incubation. Hence, P. alkanoclasticum is an apt candidate for the biodegradation of PAHs and the bioremediation of sites contaminated by them.  相似文献   

14.
High molecular weight polycyclic aromatic hydrocarbons (HMW PAHs) increase in hydrophobicity with increases in their molecular weight and ring angularity. Microbial strategies to deal with PAH hydrophobicity include biofilm formation, enzyme induction, and biosurfactants, the effect of which is variable on PAH metabolism depending on the surfactant type and concentration, substrate, and microbial strain(s). Aerobic HMW PAH metabolism proceeds via mineralization, partial degradation, and cometabolic transformations. Generally, bacteria and nonlignolytic fungi metabolize PAHs via initial PAH ring oxidation by dioxygenases to form cis‐dihydrodiols, which are transformed to catechol compounds by dehydrogenases and other mono‐ and dioxygenases to substituted catechol and noncatechol compounds, all ortho‐ or metacleaved and further oxidized to simpler compounds. However, lignolytic fungi form quinones and acids to CO2. This review discusses the pathways for HMW PAH microbial metabolism. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
Air pollution control (APC) residues from waste incineration have been blended with silica and alumina and the mix melted using DC plasma arc technology. The chemical composition of the fully amorphous homogeneous glass formed has been determined. Waste acceptance criteria compliance leach testing demonstrates that the APC residue derived glass releases only trace levels of heavy metals (Pb (<0.007mg/kg) and Zn (0.02mg/kg)) and Cl(-) (0.2mg/kg). These are significantly below the limit values for disposal to inert landfill. It is concluded that plasma treatment of APC residues can produce an inert glass that may have potential to be used either in bulk civil engineering applications or in the production of higher value glass-ceramic products.  相似文献   

16.
This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC’s combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink.  相似文献   

17.
Given the magnitude of stormwater runoff (from separate storm drainage systems) and its pollutional contribution, the treatment of stormwater would generate residuals in amounts equal to or in excess of the volume of sludge now generated by municipal wastewater treatment. The characteristics of stormwater runoff differ substantially from that of wastewater or combined sewer overflow (CSO) in several important parameters, most notably suspended solids (SS) and organic content. The increased SS content of stormwater runoff results in higher volumes of residuals and increased handling and disposal costs. Similarly, the lower organic and nutrient content of stormwater runoff limits both the effectiveness of conventional biological treatment processes and land application disposal options. Several treatment and handling approaches are discussed and evaluated, including both centralized and satellite options. In addition, the primary and secondary economic (e.g. cost, land requirements) and environmental (e.g. air and water pollution, public health, etc.) impacts of stormwater runoff residuals treatment, handling, and disposal are reviewed.  相似文献   

18.
Matrix effects may increasingly lead to erroneous environmental decisions as regulatory limits or risk‐based concentrations of concern for trace metals move lower toward the limits of analytical detection. A U.S. Environmental Protection Agency Office of Technical Standards Alert estimated that environmental data reported using inductively coupled plasma spectrometry (ICP‐AES) has a false‐positive rate for thallium of 99.9 percent and for arsenic of 25 to 50 percent. Although this does not seem to be widely known in the environmental community, using three case studies, this article presents data in environmental samples that demonstrate severe matrix effects on the accuracy of arsenic and thallium results. Case Study 1 involves soil results with concentrations that approached or exceeded the applicable regulatory soil cleanup objectives of 13 mg/kg for arsenic and 2 mg/kg for thallium. Reanalysis using ICP coupled with a mass spectrometer (ICP‐MS) confirmed all thallium results were false positives and all arsenic results were biased high, concluding no action was required for soil remediation. Case Study 2 involves groundwater results for thallium at a Superfund site, where thallium was detected in groundwater up to 21.6 μ g/L using ICP‐AES. Reanalysis by ICP‐MS reported thallium as nondetect below the applicable regulatory level in all samples. ICP‐MS is usually a more definitive and accurate method of analysis compared to ICP‐AES; however, this is not always the case, as we demonstrate in Case Study 3, using data from groundwater samples at an industrial site. Through a weight‐of‐evidence approach, it is demonstrated that although method quality control results were acceptable, interferences in some groundwater samples caused biased high results for arsenic using ICP‐MS, which were significantly lower when reanalyzed using hydride generation atomic fluorescence spectrometry. Causes of these interference effects and conclusions from the three case studies to obtain accurate metal data for site assessment, risk characterization, and remedy selection are discussed. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
In Sweden, use of industrial residues is still hindered by concern for their long-term properties. A three-year research project was therefore initiated aiming to (1) identify the crucial processes of ageing related to the usefulness of residues in roads; (2) investigate the consequences of these processes for technical and environmental properties of the residues, and (3) propose a method for accelerated ageing to predict the long-term properties. This paper gives an overview of the project methodology, a summary of the test results and references to papers where further details are given.The project, running through 2006-2008, compared naturally aged samples of two residues used as sub-bases in existing asphalt paved roads with samples of fresh residues from producers’ piles. Steel slag of electric arc furnace (EAF) type and municipal solid waste incinerator (MSWI) bottom ash were chosen. The samples were thoroughly characterised in order to identify which ageing processes had been crucial.The results showed that:
-
Bottom ash from the pavement edge was more aged than bottom ash from the road centre. However, no difference in pH was found, instead the differences were caused by differences in water exposure.
-
Steel slag from the pavement edge showed traces of carbonation and leaching processes, whereas slag from the road centre was identical to fresh slag.
-
Water exposure to the subbase materials after ten years in an asphalt paved road was calculated to less than 0.1-0.5 litres per kg.
-
Ageing reactions in steel slag and MSWI bottom ash, ready for use, were too small to be verified by laboratory measurement of deformation properties under loaded conditions.
An accelerated ageing test for steel slag was set up to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material.An accelerated ageing test for bottom ash was set up to achieve the pozzolan reactions that were observed in SEM analyses of in situ specimens.It is recommended to use uncrushed particles when properties of aged material are studied, in order to preserve the original particle surfaces.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are among the world's most significant environmental organic contaminants because of their carcinogenic properties. PAHs are widely distributed globally as a result of releases from numerous natural and anthropogenic activities. Consequently, several PAH monitoring studies have been conducted and remediation approaches explored. This article aims to provide the current status of PAH distribution in Nigeria's oil and gas industrial region in relation to the technologies adopted for PAH remediation. Ideally, the findings will provide insight into the challenges in managing organic contaminants derived from petroleum exploration activities in developing countries with Nigeria as a case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号