首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宗雪梅 《环境科学学报》2020,40(4):1410-1421
利用RFM模式,模拟计算了在研仪器—大气红外辐射超高光谱探测仪的临边探测模式下大气污染气体体积混合比的权重函数.结合仪器的可探测亮温阈值(0.3 K),利用权重函数线性化方法,计算并分析了6种大气状态下,气体混合比廓线在不同反演精度条件下可获得的光谱通道数随切点高度的变化,并给出了可用光谱通道在不同切点高度的位置.结果表明,随着相对反演精度的降低,可用光谱通道数量增加,除热带大气外,其它5种大气在10%臭氧反演精度和5%甲烷反演精度条件下有足够的通道,可用于反演4.6 km以上的混合比廓线.CO在15%反演精度条件下,6种大气均能获得反演6.9 km以上廓线的光谱通道.近地面切点高度反演比较困难,很难获得较高的反演精度.可用光谱通道位置与气体吸收线位置特别是峰值区域一致,也与气体模拟亮温高值区一致.  相似文献   

2.
1978至1987年间的连续测量表明,全球平均对流层甲烷混合比增加11%,由1978年元月的1.52ppm(体积)增至1987年9月的1.684ppm(体积),即年增加0.0164±0.001ppm(体积),全球对流层甲烷混合比不是0.0164±0.001ppm(体积)/年的线性增长率就是过去5年里增长率变小,总之是一贯的。还没有证实1982年南太平洋的埃尔尼诺(ElNino)事件对全球甲烷影响的迹象,然而同期却观察到太平洋西北部甲烷在急剧下降。通过甲烷的氧化  相似文献   

3.
该文利用主动式遥感卫星云-气溶胶激光雷达和红外探测者卫星(CALIPSO)提供的激光雷达数据反演2015-2020年长三角地区大气边界层高度(ABLH)时空分布特征。结果表明:(1)长三角地区在CALIPSO午间过境时段的6年大气边界层平均高度为1.57km,年际波动较小,2020年最高,2016、2017年最低。季节上春夏季高于秋冬季,春季最高,冬季最低。(2)空间分布上,由沿海到内陆逐渐增高,西南部山区在多年和各季节上都是最高值。长三角西北部,中北部是造成年平均差异的主要区域。(3)大气边界层高度分布与海拔高度、归一化植被指数的分布具有较好的一致性,多年和各季节分布均呈极显著正相关关系(P<0.01)。(4)频率分布上,高度在1.2~1.5 km的大气边界层占比最高,5.4~5.7 km的大气边界层占比最低。大气边界层高度在0.6~2.1 km占比达到68.5%,超过4.2 km的超高边界层占比为1.12%。  相似文献   

4.
确定大气混合层高度方法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文介绍一种,用ADAS探空资料,直接确定大气混合层高度的方法。它是根据ADAS探空得到的温度、风、位温、混合比随高度的分布,以及上述各气象要素在混合层内和混合层以上变化的差异,来确定大气混合层的高度。并将由这种方法得到的结果与 Nozaki〔1〕等人提出的用地面气象资料估算混合层高度,所得到的结果进行比较,得到了较为一致的结果。认为在大气边界层内,对于能够直接得到温度、风、位温等气象要素随高度变化的观测点,用这种方法来确定大气混合层高度是可信的,而且方法也比较简单。   相似文献   

5.
1985年首次报道南极上空15~20km处出现“臭氧空洞”后,臭氧衰竭一直是主要环境问题之一.过去10年大气平流层臭氧浓度约减少2.5%,仅1991年就减少约2%.同年9月臭氧值达到历年同期最低值、“臭氧空洞”出现得早,在11~13km、25~30km高度首次观测到臭氧衰竭,衰竭量达50%.南极站也发现在25~30km高空,9~10月臭氧混合比比正常恒定的混合比低30~50%,臭氧降低时间约40天,速度为以往春天“臭氧空洞”形成速度的1/2.25~30km高度 此高度臭氧衰竭发生在9月上旬,主要与极区平流层云(PSCs)有关.PSCs可能是威德尔海和帕默半岛地区的大气移动所致,由高山背风面气流在平流层25~30km高度产生.这一现象1991年比以往严重得多.PSCs使无活性氯转变为活性形式,没有阳光时也可使臭氧减少;使活性氮变成硝酸冰粒子,并在表面与含氯化合物反应释放出氯,春天阳光照射时变成活性氯致使臭氧显著减少.另外.30km高空臭氧衰竭也可能通过单纯化学反应发生,但只能部分解释此高度臭氧衰竭.11~13km高度 此高度臭氧衰竭发生在9月下旬,由大量硫酸气溶胶导致.气溶胶对臭氧的作用在1982年墨西哥EIChichon火山爆发后引起广泛重视.1991年6月和8月分别发生了菲律宾Pinatubo火山和智利哈德孙火山爆发.Pinatubo火山爆发后的几周内,气溶胶(95  相似文献   

6.
2006~2010年珠三角地区SO2特征分析   总被引:3,自引:2,他引:1  
对广州番禺大气成分站2006~2010年期间的SO2资料进行了分析,讨论了珠江三角洲(珠三角)地区地面SO2体积分数的年、季节、月、日变化特征和概率的分布特征.珠三角地区地面SO2变化特征的分析结果表明,2010年地面SO2体积分数的总体水平相对近年来有一定下降,高浓度事件发生频率降低;冬、春季SO2各项统计值要高于夏、秋季,干季明显高于湿季,可能与大气边界层高度和太阳辐射等因素的季节性变化相关;SO2干湿季的日变化趋势相仿,日最高峰时间相同,只是湿季达次高峰和最低点的时间比干季要提前1 h,这可能与季节性的大气边界层高度和辐射强度变化,以及日照时间长度有关;SO2体积分数的概率分布特征比较复杂,各月谱型分布各有不同,可能与季节性因素的变化规律相关.  相似文献   

7.
随着大气层中温室气体浓度的升高,大气温度正在逐渐变暖。测定大气温度的变化是从1900年开始的,第一个测定站建立在 Smithsonian 研究所。以后全世界相继建立了地面测定站与高空大气温度测定站。近30年来先后对地球上面850~300毫巴的对流层、300~100毫巴的对流顶层与100~50毫巴的低平流层的大气温度作了系列的测定。全世界在1958~1987年间,在850~300毫巴高度的所有测定站的95%所测得的大气温度平均每10年上升为0.09℃,在100~50毫巴的平流底部在1973~  相似文献   

8.
北京上空气溶胶浓度垂直廓线特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用2008—2010年北京地区3.5 km高空内飞机探测的气溶胶(粒径范围为0.10~3.00 μm)数据,分析了该地区气溶胶的时空分布特征. 结果表明:①气溶胶浓度(以数浓度计,下同)均随高度增加而减小,在1.5 km以上高空的气溶胶浓度垂直梯度变化明显低于1.5 km以下的垂直梯度变化. 4—11月气溶胶浓度季节变化表现为夏季最高、秋季次之、春季最低. ②气溶胶浓度廓线逐时(09:00—19:00)变化较清晰地反映出其受大气边界层演变的影响. 在0~1.5 km高空,白天气溶胶浓度高值出现在09:00—11:00,低值出现在13:00—14:00;而在1.5~3.5 km高空的气溶胶浓度时段分布与其相反. ③人为活动是影响气溶胶浓度区域水平分布的重要因子. ④将气溶胶浓度廓线垂直分布分为a、b、c 3类. 类型a的近地面气溶胶浓度(0~4 000 cm-3)低,垂直方向上变化很小;类型b的近地面气溶胶浓度(4 000~9 000 cm-3)较高,垂直递减明显;类型c的近地面气溶胶浓度特别高,量级达到104 cm-3,并在大气边界层顶(约1.5 km)附近迅速递减. 北京地区气溶胶浓度廓线以类型b居多.   相似文献   

9.
利用AIRS反演结果与瓦里关大气本底站甲烷浓度观测资料进行了对比分析,并对2003~2015年青藏高原对流层大气甲烷浓度的分布变化特征进行研究分析.结果表明:AIRS反演资料与瓦里关观测资料具有一致的月、年、季度变化趋势和分段变化特征.青藏高原甲烷浓度沿羌塘高原东缘——三江源西北地区一线,东南高、西北低,随高度上升呈现显著降低趋势,高原中部偏南地区甲烷浓度变率最大且异常敏感.2003~2015年青藏高原甲烷浓度持续上升,秋季最快、冬季最慢,年增长速度为5.2nmol/(mol?a),2013~2015期间小于全球增速;季节变化为典型单峰分布,夏季最高,春季最低,随着高度上升季节变化更为明显.  相似文献   

10.
华北地区霾期间对流层中低层气溶胶垂直分布   总被引:3,自引:1,他引:2  
基于美国宇航局(NASA)的CALIPSO星载激光雷达监测数据,通过分析总后向散射系数、体积退偏比和色比,对华北地区2007年1月1日至2008年12月31日期间出现灰霾时对流层中低层气溶胶光学和微物理特性的垂直分布进行了研究.结果表明:灰霾期间对于4 km以下的对流层中低层大气总体来说,非球形气溶胶出现频率略高于球形气溶胶,小粒径气溶胶出现频率高于大粒径气溶胶.在4 km以下的大气中,气溶胶出现频率在1 ~2 km高度范围内最高,在2~3 km高度范围内最低;球形气溶胶在2~3 km高度范围内出现频率最高,非球形气溶胶出现频率在1 ~2 km高度范围内最高;大粒径气溶胶在l~2 km高度范围内出现频率最高,小粒径气溶胶在0~1 km高度范围内出现频率最高.  相似文献   

11.
目的探测大气气溶胶的垂直分布,表征气溶胶的垂直结构和各层气溶胶的性质。方法使用金华站点激光雷达观测数据进行个例分析,用梯度法对边界层进行反演,利用退偏振比、颜色比和光学厚度对大气中不同高度的气溶胶层进行分析。结果大气垂直结构会出现多层不同性质的气溶胶层,激光雷达可以准确地探测气溶胶随时间变化的垂直结构特征。选取0点至8点进行分析表明,在1.5km高度上下出现两层气溶胶层,上下两层气溶胶层呈现出不同的性质,且其性质会随时间变化而改变。结论大气边界层以外气溶胶分布较为复杂,利用激光雷达探测的气溶胶消光系数、退偏振比、颜色比和光学厚度等参数能够较好地表征气溶胶的垂直结构和各层气溶胶的性质。  相似文献   

12.
河北省气溶胶标高时空变化及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
以2012年河北省20个监测站的MODIS AOD(气溶胶光学厚度)和近地面水平能见度数据为基础,应用Peterson 模型和高斯模型,计算气溶胶标高月均值年内变化模型系数;应用全微分近似计算原理,构建了气溶胶标高时空变化的成因模型.结果表明:①全省平均气溶胶标高以夏季最高,为3.298 km;春、秋季次之,分别为2.864和2.284 km;冬季最低,为1.597 km. 全省气溶胶标高空间分布以夏季地域差异最显著,最大值为3.193 km;冬季地域差异最小,最大值为1.487 km. ②在全省尺度上,大气颗粒物排放强度和大气边界层高度每变化1%时,将会引致气溶胶标高分别变化0.577%和0.143%,二者对气溶胶标高变化的贡献率分别为80.1%和19.9%;在省内6个次级区域尺度上,大气颗粒物排放强度越大的区域,大气边界层高度对气溶胶标高的贡献率越大,如冀中南平原、沧州沿海平原和冀东平原的贡献率分别达到63.7%、57.8%、54.2%;反之则贡献率较低,如冀中平原、冀西北山区和冀东北山区的贡献率则分别仅为45.4%、32.6%、8.6%.   相似文献   

13.
北京地区边界层大气臭氧浓度变化特征分析   总被引:21,自引:4,他引:17  
利用2001-03~2006-10的大气臭氧探空资料,分析了近6 a北京边界层(2 km以下)大气臭氧浓度的平均月变化和季节变化规律.结果表明,边界层大气臭氧浓度的月变化很明显,1月臭氧浓度最小,地面臭氧浓度不到10×10-9(体积分数,下同),上层(即2 km)臭氧浓度也不到50×10-9.而6月臭氧浓度最大,地面达到85×10-9,上层大于90×10-9.臭氧浓度具有明显的季节特征,从臭氧浓度值来看,冬季最小,夏季最大.从地面到上层的臭氧浓度的变化幅度来看,冬季变化最大,夏季变化最小.根据廓线变化方式,臭氧浓度廓线可分为3种类型,冬季型、夏季型、春秋季型.不同高度臭氧月平均浓度也明显不同.分析地面及上层臭氧浓度与气象因子如温度和湿度的相关关系,发现地面臭氧浓度与温度具有较好的线性关系,相关系数在0 .85以上.  相似文献   

14.
测定了自1986年12月至1991年11月在金泽市采集的雨水中硫酸盐的硫同位素比值,以便查明雨水中疏酸盐的来源。而水中硫酸盐的硫同位素比值的变化范围从+0.9‰至+14.7‰,平均为+6.3‰。在冬季该比值高于其它季节。从雨水硫酸盐的硫同位素比值中扣除了海盐的贡献后算出的非海盐硫酸盐的硫同位素的比值,也显示在冬季有相对较高的值。这种季节性变化暗示,在冬季采集的雨水中的硫酸盐主要来自硫同位素比值较高的发生源,如在中国北方煤的燃烧(长江以北)。  相似文献   

15.
利用SAGE Ⅱ卫星资料分析青藏高原上空臭氧垂直廓线   总被引:5,自引:0,他引:5  
利用1985-2002年SAGE Ⅱ卫星资料获取青藏高原地区上空大气臭氧垂直廓线,分析其变化规律.结果表明:①卫星资料与地面臭氧探空资料有很好的一致性;②青藏高原上空大气臭氧垂直廓线存在南北间的差异和季节变化,夏秋季臭氧廓线极大值出现的位置比冬春季高出1~2 km(高原南部)和2~3 km(高原北部);③臭氧数浓度在10~20 km的高度存在明显季节和南北区域差异;④与同纬度其他地区的平均值相比,夏季(6-9月)臭氧低值主要出现在15~20 km的高原对流层顶附近,最低值出现在18 km附近,而冬季这种差异相对较小.   相似文献   

16.
上海不同强度干霾期间气溶胶垂直分布特征   总被引:15,自引:0,他引:15       下载免费PDF全文
利用美国宇航局(NASA)的CALIPSO星载激光雷达资料,通过分析后向散射系数、体积退偏比和色比等参量揭示了上海地区发生不同强度干霾时气溶胶的垂直分布特征,并结合地面气溶胶观测进行了分析.结果表明,发生干霾时,低层大气(2km以下)污染最严重,气溶胶的后向散射系数主要集中在0.0015~0.0035km-1×sr-1,体积退偏比集中在0~15%,色比集中在0.2~0.8;2~10km高度内,散射系数相对较小,其中2~8km的值主要集中在0.0008~0.0025 km-1×sr-1,8~10km的值则主要集中0.0008~0.0015 km-1×sr-1,气溶胶体积退偏比和色比在2~4km、4~6km、6~8km和8~10km各高度内分别集中在0~20%和0~0.6.在0~10km高度内,相对于轻微干霾和轻度干霾,中度干霾时气溶胶的散射能力和不规则性最强,粒径也最大.  相似文献   

17.
法国政府环保部门发表的“1987年法国大气环境质量报告书”指出,自1980年以来,大气中SO_2减少了57%,NO_2减少了8%,TSP减少了27%。1987年监测值与1986年相比,分别下降了4%、2%和2%。  相似文献   

18.
以2006~2015年四川南部的MODIS 3km AOD日产品及地面观测数据为基础,利用本地CE318数据对MODIS AOD产品进行校验,确保AOD产品的可用性;建立了AOD与PM_(2.5/10)之间的关系模型,并重点分析了川南城市群的大气灰霾时空分布特征及其成因.结果表明:CE318AOD与MODIS AOD的相关性为0.779,PM_(2.5)、PM_(10)与MODIS AOD的最优相关性为0.894、0.83;在空间上,川南AOD均值呈现出北高南低的格局,其中内江市和自贡市AOD值最大;在时间上,2006~2013年AOD均值变化不明显,2013年后明显下降;季节上表现为春冬季高、夏秋季低,其中春季AOD高值占比最大;月变化特征表现为2~4、9月AOD值高,其他月AOD值低;川南AOD的时空分布受地形、工业、风向风速、流场、边界层高度等因素影响,其中地形和流场对川南AOD的空间分布影响最为突出.  相似文献   

19.
利用大气O3探测激光雷达在深圳市东部生态区和西部城区同步开展垂直观测,探究了2018年深圳市O3立体分布在秋季光化学污染活跃期至冬季非活跃期的演变过程.结果表明:光化学反应活跃的10月,东部地面O3浓度相对于西部地面高出约128%;地面向上至450m,O3浓度在东部生态区发生快速降低,而在西部城区由于存在“滴定效应”,O3浓度随高度升高而升高;450m~2km,东、西部O3浓度均随高度升高而降低,西部城区O3浓度水平超过东部生态区约30%;2km以上高空,东、西部O3浓度趋同(70μg/m3),并保持稳定,为具深圳市秋季O3污染过程提供了较高的大气背景浓度.高污染期间,深圳市大气边界层内O3浓度变化较为一致,西部高空的O3区域传输作用更加显著.秋季至冬季光化学反应逐渐减弱,深圳市O3浓度的水平和垂直空间差异逐渐减小,冬季的深圳市O3污染基本受大气背景控制.  相似文献   

20.
基于气溶胶光学特性垂直分布的一次浮尘过程分析   总被引:8,自引:4,他引:4  
为了进一步认识上海地区浮尘污染的垂直分布特征,利用地面微脉冲激光雷达(MPL)和CALIPSO星载激光雷达对2009年10月19日远程输送到上海的一次典型浮尘过程的气溶胶光学特性进行分析.结果表明,此次浮尘过程气溶胶层主要存在于2km以下低空中,气溶胶后向散射系数范围0~0.015 km-1·sr-1,MPL消光系数范围0~0.32 km-1.浮尘过程中消光系数先增加后降低,气溶胶层不断抬升.浮尘天气2km以下大气中存在大量小粒径气溶胶颗粒,而0~0.5 km近地面则以颗粒较大的气溶胶为主;2~10 km大气中仅存在少量不规则气溶胶,其中4~6 km高度范围的大气由不规则气溶胶和规则气溶胶混合组成,球型和非球型粒子均存在.CALIPSO星载激光雷达532 nm总后向散射系数和MPL归一化相对后向散射系数的垂直分布特征基本一致.CALIPSO和MPL获得的消光系数垂直分布均随着高度增加而减少,但消光系数值存在较大差异.两者结合起来可以较全面客观地对上海地区浮尘天气进行观测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号