首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Increasing production and use of carbonaceous nanomaterials (NMs) will increase their release to the sewer system and to municipal wastewater treatment plants. There is little quantitative knowledge on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG) from wastewater into the wastewater biomass. As such, we investigated the quantification of GO and MWCNTs by UV-Vis spectrophotometry, and FLG using programmable thermal analysis (PTA), respectively. We further explored the removal of pristine and oxidized MWCNTs (O-MWCNTs), GO, and FLG in a biomass suspension. At least 96% of pristine and O-MWCNTs were removed from the water phase through aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg·L−1. Only 65% of GO was removed with biomass concentration at or above 1,000 mg·L−1 as total suspended solids (TSS) with the initial GO concentration of 25 mg·L−1. As UV-Vis spectrophotometry does not work well on quantification of FLG, we studied the removal of FLG at a lower biomass concentration (50 mg TSS·L−1) using PTA, which showed a 16% removal of FLG with an initial concentration of 1 mg·L−1. The removal data for GO and FLG were fitted using the Freundlich equation (R2 = 0.55, 0.94, respectively). The data presented in this study for carbonaceous NM removal from wastewater provides quantitative information for environmental exposure modeling and life cycle assessment.  相似文献   

2.
A study of the decolorization of reactive brilliant blue in an aqueous solution using Fe-Mn-sepiolite as a heterogeneous Fenton-like catalyst has been performed. The Fourier transform infrared (FTIR) spectra of the catalyst showed bending vibrations of the Fe-O. The X-ray diffraction (XRD) patterns of the catalyst showed characteristic diffraction peaks of α-Fe2O3, γ-Fe2O3 and MnO. A four factor central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables (catalyst addition, hydrogen peroxide dosage, initial pH value and initial dye concentration). When the reaction conditions were catalyst dosage= 0.4 g, [H2O2]= 0.3 mL, pH= 2.5, [reactive brilliant blue]o = 50 mg·L−1, and volume of solution= 500 mL at room temperature, the decolorization efficiency of reactive brilliant blue was 91.98% within 60 min. Moreover, the Fe-Mn-sepiolite catalyst had good stability for the degradation of reactive brilliant blue even after six cycles. Leaching of iron ions (<0.4 mg·L−1) was observed. The decoloring process was reactive brilliant blue specific via a redox reaction. The benzene ring and naphthalene ring were first oxidized to open ring; these were then oxidized to the alcohol and carboxylic acid. The reactive brilliant blue was decomposed mainly by the attack of ·OH radicals including surface-bound ·OH radicals generated on the catalyst surface.  相似文献   

3.
• Orange tree residuals biochar had a better ability to adsorb ammonia. • Modified tea tree residuals biochar had a stronger ability to remove phosphorus. • Partially-modified biochar could remove ammonia and phosphorus at the same time. • The real runoff experiment showed an ammonia nitrogen removal rate of about 80%. • The removal rate of total phosphorus in real runoff experiment was about 95%. Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.  相似文献   

4.
The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.  相似文献   

5.
Variations in cadmium (Cd) tolerances and accumulations among fifteen wetland plant species in moderately (0.5 mg·L−1) and heavily (1.0 mg·L−1) Cd-polluted wastewaters were investigated in constructed wetlands. Cd removal efficiencies from the wastewaters were more than 90%, and 23.5% and 16.8% of the Cd in the water accumulated in wetland plants for 0.5 and 1.0 mg·L−1 Cd treatments, respectively. The variations among the plant species were 29.4-fold to 48.7-fold in plant biomasses, 5.4-fold to 21.9-fold in Cd concentrations, and 13.8-fold to 29.6-fold in Cd accumulations. The plant species were also largely diversified in terms of Cd tolerance. Some species were tolerant of heavy Cd stress, and some others were sensitive to moderate Cd level. Four wetland plant species were selected for the treatment of Cd-polluted wastewater for their high Cd accumulating abilities and relative Cd tolerances. Plant Cd quantity accumulations are correlated positively and significantly (P <0.05) with plant biomasses and correlated positively but insignificantly (P >0.05) with plant Cd concentrations. The results indicate that the Cd accumulation abilities of wetland plant species are determined mainly by their biomasses and Cd tolerances in growth, which should be the first criteria in selecting wetland plant species for the treating Cd-polluted wastewaters. Cd concentration in the plants may be the second consideration.  相似文献   

6.
Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L−1?h−1 for Cu(II) at an initial concentration of 50 mg?L−1 and 5.3±0.4 mg?L−1 h−1 for Co(II) at an initial 40 mg?L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L−1?h−1) and Co(II) (6.4 mg?L−1?h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.  相似文献   

7.
• Strong metal-support interaction exists on Pt/Fe3O4 catalysts. • Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4. • Fe3O4 supports enhance the strength of CO adsorption on Pt metal particles. The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneous-structured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.  相似文献   

8.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

9.
Microsensor measurements and fluorescence in situ hybridization (FISH) analysis were combined to investigate the microbial populations and activities in a laboratory-scale sequencing batch reactor (SBR) for completely autotrophic nitrogen removal over nitrite (CANON). Fed with synthetic wastewater rich in ammonia, the SBR removed 82.5±5.4% of influent nitrogen and a maximum nitrogen-removal rate of 0.52 kgN·m−3·d−1 was achieved. The FISH analysis revealed that aerobic ammonium-oxidizing bacteria (AerAOB) Nitrosomonas and anaerobic ammonium-oxidizing bacteria (AnAOB) dominated the community. To quantify the microbial activities inside the sludge aggregates, microprofiles were measured using pH, dissolved oxygen (DO), NH4+, NO2 and NO3 microelectrodes. In the outer layer of sludge aggregates (0–700 μm), nitrite-oxidizing bacteria (NOB) showed high activity with 4.1 μmol·cm−3·h−1 of maximum nitrate production rate under the condition of DO concentration higher than 3.3 mg·L−1. Maximum AerAOB activity was detected in the middle layer (depths around 1700 μm) where DO concentration was 1.1 mg·L−1. In the inner layer (2200–3500 μm), where DO concentration was below 0.9 mg·L−1, AnAOB activity was detected. We thus showed that information obtained from microscopic views can be helpful in optimizing the SBR performance.  相似文献   

10.
陈晨  李北罡 《环境化学》2021,(3):799-807
以天然高分子化合物海藻酸钠(sodium alginate,SA)为骨架,结合磁性Fe3O4和稀土铈离子Ce(Ⅲ)通过溶液反应制备出一种新型的磁性海藻酸铈复合微球(Fe3O4@SA;Ce).采用X射线衍射(XRD)、孔结构比表面积分析(BET)、扫描电子显微镜(SEM)、红外光谱(FT-IR)及振动样品强磁计(VSM)对Fe3O4@SA;Ce的结构进行了表征,并以直接桃红12B(direct red 12B,DR 12B)和直接橙S(direct orange S,DO S)两种染料为吸附对象,探讨了Fe3O4@SA;Ce的吸附剂性能、吸附动力学和热力学.结果表明,Fe3O4@SA;Ce对室温下自然pH染料溶液中DR 12B和DO S均表现出良好的吸附效果,吸附量分别可达464 mg·g-1和730 mg·g-1.在不同温度下(298、313、328 K),Fe3O4@SA;Ce对DR 12B和DO S的吸附过程均可用拟二级吸附动力学方程准确描述.通过等温吸附研究,发现Fe3O4@SA;Ce对两种染料的等温吸附较好地符合Freundlich模型.各种表征结果表明,SA与Ce(Ⅲ)和Fe3O4交联反应后生成的Fe3O4@SA;Ce凝胶球表面有大量深浅不一的褶皱沟纹,形貌发生了显著变化.作为一种绿色环保、制备方法简单、可高效吸附的磁性高分子复合吸附剂,Fe3O4@SA;Ce对高浓度染料具有很好的吸附效果,期望能够在染料废水处理中得到广泛应用.  相似文献   

11.
Sodium-jarosite is a type of industrial waste that results from hydrometallurgy and inorganic chemical production. The iron content of jarosite residue may be utilized to produce theoretically the ferrous materials. The difficulty in production of high quality poly-ferric sulfate (PFS) is how to remove impurities contained in jarosite residue. This paper proposes a novel method for disposing sodium-jarosite which can be used to synthesize PFS, a very important reagent for treating waste water. The method consists of a two-step leaching experimental procedures. The first step, pre-leaching process, is to remove impurity metals by strictly controlling the leaching conditions. The acid concentration of acidic water was adjusted according to the content of impurity metals in sodium-jarosite and the leaching temperature was controlled at 25°C. The second step is to decompose sodium-jarosite to provide enough ferric ions for synthesizing PFS, the concentrated sulfuric acid consumption was 0.8 mL·g-1 sodium-jarosite and the leaching temperature was above 60°C. In the experiment, decomposing iron from sulfate sodium-jarosite can take the place of ferric martials for synthesizing PFS. Results show that the PFS synthesized from sodium-jarosite had a high poly-iron complex Fe4.67(SO4)6(OH)2·20H2O. Further, the PFS product’s specifications satisfied the national standard of China.  相似文献   

12.
Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe2O3 and Fe2O3 supported by alumina (Fe2O3/Al2O3) were investigated using thermo-gravimetric analysis. Fe2O3/Al2O3 showed better reactivity over bare Fe2O3 toward CO reduction. This was well supported by the observed higher rate constant for Fe2O3/Al2O3 over pure Fe2O3 with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ·mol−1. The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promising reduction reactions of pure Fe2O3 and Fe2O3/Al2O3. The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study.  相似文献   

13.
This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnCl2 activation. The as-prepared JAS-MACs were characterized by thermogravimetric, nitrogen gas adsorption isotherm and high resolution scanning electron microscopy analysis. The interacting effects of chemical dosage, activation temperature and time on the mesoporosity, mesopore volume and carbon yield were investigated, and further optimized by response surface methodology (RSM). The Brunauer-Emmett-Teller surface area, mesoporosity and mesopore volume of the JAS-MAC prepared under optimum condition were identified to be 1631 m2·g-1, 90.16% and 1.11 cm3·g-1, respectively. Compared with commercial activated carbons, this carbon exhibited a comparable monolayer adsorption capacity of 374.5 mg·g-1 for Methylene Blue dye. The findings suggest that RSM could be an effective approach for optimizing the pore structure of fabricated activated carbons.  相似文献   

14.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   

15.
A novel composite adsorbent, hydroxyapatite/manganese dioxide (HAp/MnO2), has been developed for the purpose of removing lead ions from aqueous solutions. The combination of HAp with MnO2 is meant to increase its adsorption capacity. Various factors that may affect the adsorption efficiency, including solution pH, coexistent substances such as humic acid and competing cations (Ca2+, Mg2+), initial solute concentration, and the duration of the reaction, have been investigated. Using this composite adsorbent, solution pH and coexistent calcium or magnesium cations were found to have no significant influence on the removal of lead ions under the experimental conditions. The adsorption equilibrium was described well by the Langmuir isotherm model, and the calculated maximum adsorption capacity was 769 mg·g−1. The sorption processes obeyed the pseudo-second-order kinetics model. The experimental results indicate that HAp/MnO2 composite may be an effective adsorbent for the removal of lead ions from aqueous solutions.  相似文献   

16.
• Earthworms increase CO2 and N2O emissions in agricultural and forest soil. • 10% biochar suppresses CO2 and N2O emissions in forest soil. • Biochar interacted with earthworm to significant affect CO2 and N2O emissions. The application of manure-derived biochar offers an alternative to avoid the direct application of manure to soil causing greenhouse gas emission. Soil fauna, especially earthworms, can markedly stimulate carbon dioxide (CO2) and nitrous oxide (N2O) emissions from soil. This study therefore investigated the effect of cattle manure biochar (added at rates of 0, 2%, or 10%, coded as BC0, BC2 and BC10, respectively) application, with or without earthworm Aporrectodea turgida, on emissions of CO2 and N2O and changes of physic-chemical properties of agricultural and forest soils in a laboratory incubation experiment. The BC10 treatment significantly enhanced cumulative CO2 emissions by 27.9% relative to the untreated control in the agricultural soil. On the contrary, the BC2 and BC10 treatments significantly reduced cumulative CO2 emissions by 16.3%–61.1% and N2O emissions by 92.9%–95.1% compared to the untreated control in the forest soil. The addition of earthworm alone significantly enhanced the cumulative CO2 and N2O fluxes in agricultural and forest soils. Cumulative CO2 and N2O fluxes were significantly increased when BC2 and BC10 were applied with earthworm in the agricultural soil, but were significantly reduced when BC10 was applied with earthworm in the forest soil. Our study demonstrated that biochar application interacted with earthworm to affect CO2 and N2O emissions, which were also dependent on the soil type involved. Our study suggests that manure biochar application rate and use of earthworm need to be carefully studied for specific soil types to maximize the climate change mitigation potential of such management practices.  相似文献   

17.
生物炭对土壤中阿特拉津吸附特征的影响   总被引:3,自引:0,他引:3  
为探究生物炭对土壤中阿特拉津的吸附特征及影响因素,采用批处理实验研究了灭菌(T1)、5%秸秆生物炭+灭菌(T2)、未灭菌(T3)和5%秸秆生物炭+未灭菌(T4)条件下对土壤中阿特拉津吸附特征及土壤理化性质的影响.结果表明,在最初0—12 h内,不同处理下阿特拉津吸附量均随时间的延长而快速增加,而在12—96 h内增加较为缓慢并逐渐趋于平衡.在96 h时,T2和T4处理下阿特拉津最大吸附量分别达到46.22 mg·kg-1和46.43 mg·kg-1,而未添加生物炭的T1和T3处理则有所降低,分别为44.20 mg·kg-1和43.09 mg·kg-1.准二级动力学模型更好地拟合不同处理下土壤对阿特拉津吸附特征,T2和T4处理下吸附速率常数K分别为0.257 kg·mg-1·h-1和0.339 kg·mg-1·h-1,显著高于未添加生物炭处理的T1和T3处理(K分别为-0.083 kg·mg-1·h-1和-0.261 kg·mg-1·h-1).内扩散模型显示添加生物炭后,土壤对阿特拉津的吸附是一个由边界扩散、内部孔隙扩散等多因素控制的复杂化学过程.添加生物炭可显著提高土壤pH、有机碳、碱解氮、速效磷和速效钾含量,其中土壤有机碳含量与阿特拉津最大吸附量之间存在显著的正相关关系(P<0.05).由此可见,添加生物炭可以提高土壤对阿特拉津的固持能力,减少其淋溶迁移风险,从而达到修复阿特拉津污染土壤的目的.  相似文献   

18.
• The g-MoS2 coated composites (g-MoS2-BC) were synthesized. • The coated g-MoS2 greatly increased the adsorption ability of biochar. • The synergistic effect was observed for CIP adsorption on g-MoS2-RC700. • The adsorption mechanisms of CIP on g-MoS2-BC were proposed. The g-MoS2 coated biochar (g-MoS2-BC) composites were synthesized by coating original biochar with g-MoS2 nanosheets at 300°C(BC300)/700°C (BC700). The adsorption properties of the g-MoS2-BC composites for ciprofloxacin (CIP) were investigated with an aim to exploit its high efficiency toward soil amendment. The specific surface area and the pore structures of biochar coated g-MoS2 nanosheets were significantly increased. The g-MoS2-BC composites provided more π electrons, which was favorable in enhancing the π-π electron donor-acceptor (EDA) interactions between CIP and biochar. As a result, the g-MoS2-BC composites showed faster adsorption rate and greater adsorption capacity for CIP than the original biochar. The coated g-MoS2 nanosheets contributed more to CIP adsorption on the g-MoS2-BC composites due to their greater CIP adsorption capacity than the original biochar. Moreover, the synergistic effect was observed for CIP adsorption on g-MoS2-BC700, and suppression effect on g-MoS2-BC300. In addition, the adsorption of CIP onto g-MoS2-BC composites also exhibited strong dependence on the solution pH, since it can affect both the adsorbent surface charge and the speciation of contaminants. It was reasonably suggested that the mechanisms of CIP adsorption on g-MoS2-BC composites involved pore-filling effects, π-π EDA interaction, electrostatic interaction, and ion exchange interaction. These results are useful for the modification of biochar in exploiting the novel amendment for contaminated soils.  相似文献   

19.
A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg?g-1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2 M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.  相似文献   

20.
● Fe3O4 NPs increased the biomass and chlorophyll content of hemp clones. ● Fe3O4 NPs penetrated and were internalized by root cells. ● Fe3O4 NPs induced the alteration of metabolite profiles in hemp leaves. ● The psychoactive compound THC in hemp leaves was significantly down-regulated. We investigated the effect of iron oxide nanoparticles (Fe3O4 NPs, ~17 nm in size) on the phenotype and metabolite changes in hemp (Cannabis sativa L.), an annual crop distributed worldwide. Hemp clones were grown in hydroponic cultures with Fe3O4 NPs (50, 100, 200, or 500 mg/L) for four weeks. TEM and ICP-MS were used to determine Fe3O4 NPs uptake and translocation. LC-MS-based metabolomics was employed to explore the deep insight into the effect of Fe3O4 NPs on hemp plants. The results revealed that plant growth enhanced gradually with increasing concentrations of given NPs up to 200 mg/L, which improved the fresh weight and dry weight by 36.13% and 74.68%, respectively, compared to the control. Even at a high dose (500 mg/L), Fe3O4 NPs promoted plant growth, including increased biomass and tissue length. NPs significantly increased the iron and chlorophyll content in plant tissues Increased catalase activity and reduced hydrogen peroxide content in hemp leaves suggested that the Fe3O4 NPs activated the defense system. TEM showed that NPs were abundantly attached to the cell wall and dispersed throughout the root cells. Metabolomics revealed that Fe3O4 NPs induced metabolic reprogramming in hemp leaves, including the up-regulation of carbohydrates and organic acids, and down-regulation of antioxidants, especially tetrahydrocannabinol (THC). The significantly up-regulated metabolites, including peonidin and 2-hydroxycinnamic acid, could be involved in photosynthesis in hemp plants. These results demonstrate the potential of Fe3O4 NPs for promoting hemp growth and decreasing the THC content at low doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号