首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We investigated the genetic diversity and genetic structure of southern California populations of the common intertidal fucoid seaweed Pelvetia fastigiata, (J. Ag.) De Toni by means of allozyme electrophoresis and estimates of genetic neighborhood area and size, which are the first for seaweeds. We predicted that P. fastigiata populations would exhibit relatively low genetic diversity and high genetic structure because the seaweed is monoecious and has limited dispersal of gametes and zygotes. This prediction was supported; genetic diversity indices were all low compared to other seaweeds studied, but high genetic structure was evident particularly within individual reefs. Geospatial statistical analyses (second-order analyses) revealed clustered distribution of glucose-6-phosphate isomerase (GPI) alleles at the scale of 1 to 6 m within three reefs. The rare alleles were distributed only at the landward third of the reefs. Genetic neighborhood area (2.3 m2) and size (133 individuals) were estimated from parent-offspring dispersal distributions of gametes and zygotes from attached thalli and also detached reproductive fragments, which contributed very little to the effective neighborhood size. The neighborhood size was in the small theoretical range in which genetic drift could be responsible for the within-reef genetic structure. This result was equivocal, because the stereotyped distribution of rare alleles on the tips of each reef was highly unlikely to be due to random events (6.9×10-24). These results emphasize (1) the importance of allele mapping in addition to spatial statistics to elucidate genetic structure, and (2) that interpretation of genetic-structure statistics as evidence for gene flow can be complicated, even when supported with independent estimates of gene flow, if data are lacking on selection and sporadic migration events. The emerging pattern of low levels of polymorphisms in brown seaweeds will limit the use of Wright's F-statistics and will require alternative, more direct techniques for the analysis of mechanisms responsible for population genetic structure.  相似文献   

2.
Sponges display a variety of reproductive strategies that have the potential to influence population genetic structure. Histological examination of ten reproductive individuals of the Western Australian sponge Haliclona sp. showed that this species broods embryonic larvae that are potentially limited in dispersal capabilities. Because sponges have the potential to propagate in a number of modes, allozyme electrophoresis was used to assess the relative importance of asexual and sexual reproduction to recruitment, and to quantify genetic subdivision over different spatial scales. Tissue samples from 227 sponges were collected from reefs within two areas 400 km apart: Hamelin Bay and Rottnest Island. Contrary to expectations for highly clonal populations, genotypic diversity within sites was high, no linkage disequilibrium was found, and there was no evidence of genotypic clustering within reefs. There was no genetic evidence that asexual reproduction is important for the maintenance of populations. Genetic comparisons were consistent with mixing of sexually produced recruits within reefs, on a scale up to a few hundred metres, but significant genetic subdivision between reefs (FST=0.069 at Hamelin Bay, 0.130 at Rottnest Island) indicated that water gaps of several hundred metres are effective at preventing dispersal. Subdivision between the two areas, separated by 400 km, was moderately greater (FST=0.142) than within, but the same alleles were predominant in the two areas. These genetic patterns are consistent with limited dispersal capabilities of brooded larvae.Communicated by G.F. Humphrey, Sydney  相似文献   

3.
This study investigated the utility of microsatellite markers for providing information on levels of population connectivity for a low dispersing reef fish in New South Wales (NSW), Australia, at scales ≤400 km. It was hypothesized that the temperate damselfish Parma microlepis, which produces benthic eggs and has limited post-settlement dispersal, would exhibit spatial genetic structure and a significant pattern of isolation-by-distance (IBD). A fully nested hierarchical sampling design incorporating three spatial scales (sites, location and regions, separated by 1–2, 10–50 and 70–80 km respectively) was used to determine genetic variability at seven microsatellite loci. Broad-scale genetic homogeneity and lack of IBD was well supported by single and multi-locus analyses. The proportion of the total genetic variation attributable to differences among regions, locations or sites was effectively zero (Φ/R-statistics ≤0.007). The geographic distribution of genetic diversity and levels of polymorphism (H E 0.21–0.95) indicate high mutation rates, large effective population sizes, and high rates of gene flow. Significant gene flow may be driven by factors influencing pre-settlement dispersal, including the East Australian Current (EAC) and habitat continuity. Genetic connectivity may not reflect demographically important connectivity, but does imply that P. microlepis populations are well connected from an evolutionary perspective. Total observed genetic diversity was accounted for within 1–2 km of reef and could be represented within small Marine Protected Areas. Reef fishes in NSW which have life histories similar to P. microlepis (e.g. pre-settlement durations ≥2 weeks) are also likely to exhibit genetic homogeneity. Genetic markers are, therefore, most likely to provide information on demographically relevant connectivity for species with lower dispersal capabilities, small population sizes, short life spans, and whose habitats are rare, or patchily distributed along-shore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

5.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

6.
7.
Documenting the scale of movement among populations is an important challenge for marine ecology. Using nine microsatellite markers, evidence of genetic structure in a marine kelp, the sea palm Postelsia palmaeformis Ruprecht, was examined in the vicinity of Cape Flattery, Washington state, USA (48° 24′ N, 124°44′ W). Genetic clustering analysis implemented without reference to geographic structure strongly suggested that a number of distinct genetic clusters existed among the 245 plants sampled in August in the years 1997–2001. Subsequent analysis showed that clustering was associated with geographically defined populations both among (km scale) and within (m scale) sampling sites. F st analysis of geographically defined populations revealed significant genetic differentiation among populations of plants as little as 5 m apart, evidence of genetic structuring at even smaller scales, and a sharp increase in F st across populations separated by up to 23 m. F st values were also high and approximately unchanging (F st=0.470) for populations separated by greater distances (up to 11 km), consistent with a scenario of rare dispersal by detached, floating plants carried by variable currents. The results corroborate natural history observations suggesting that P. palmaeformis has extremely short (1–3 m) spore dispersal distances, and indicate that the dynamics of sea palm populations are more affected by local processes than recruitment from distant populations.  相似文献   

8.
Genetic variation of 16 allozyme loci in 397 Halicryptus spinulosus (Priapulida) revealed overall polymorphism of P=0.438 and Hardy-Weinberg expectations for heterozygosity of H e=0.060 for Baltic Sea stocks, H e=0.143 for the White Sea and H e=0.121 for Iceland. Maximal unbiased standard distances of D=0.0693 separated Baltic and White Sea populations. Nordic and Baltic populations could be distinguished by allozymes, but Baltic subsamples proved cohesive. Gene flow amounted to effective exchange values per generation of N m=2.94 over 650 km of continuous habitat, N m=10.65 over 175 km, and N m=13.85 over 20 km. Gene flow started to decrease with geographic distance beyond a dispersal threshold of 20 km, but hierarchical G ST-statistics indicated light isolation by distance beyond a minimum of 8 km. Gene flow is high for a benthic worm assumed to lack dispersal by pelagic larva, a paradox which cannot be resolved now. Baltic populations are characterized by lower heterozygosity than Nordic stocks. In the Baltic Basin, temporally continuous brackish-water conditions have only existed for the past 7000 years. The two possible colonization routes of H. spinulosus to the geologically young Baltic Sea imply genetic drift, whether by founder effect (sweepstake colonization from Iceland) or by refugial bottlenecking during the Ancylus phase of the Baltic Basin after a direct connection to the White Sea had been sequestered. Continued genetic drift is emphasized by lower heterozygosity in the ecologically unstable Belt Sea compared to the central Baltic. Allozymes falsify the reduced-mutability hypothesis to explain bradytelic evolution of Priapulida. Regional genetic homogeneity, ample polymorphism, and preference for anoxic black mud qualify H. spinulosus populations as indicators of microevolutionary responses to water circulation regimes or pollution in the Baltic Sea.  相似文献   

9.
Allozyme data are presented for six discrete populations of the giant hydrothermal vent tube worm Riftia pachyptila Jones, 1981 collected throughout the species' known range along mid-ocean spreading ridges of the eastern Pacific Ocean. Contrary to an earlier report, levels of genetic variation are relatively high in this species. Estimates of gene flow based on F-statistics revealed that dispersal throughout the surveyed region is sufficiently high to counter random processes that would lead to losses of genetic diversity and significant population differentiation. R. pachyptila, like other species of tube worms, displays considerable morphologic variation among populations, but this diversity is not reflected in allozyme variation. Vestimentifera, in general, appear to show extensive phenotypic plasticity. In the light of the available genetic data, caution is warranted when making inferences about the taxonomic status of collections based on morphological variation alone. A general decrease in estimated rates of gene flow between geographically more distant populations supports the hypothesis that dispersal in this species follows a stepping-stone model, with exchange between neighboring populations in great excess of long-distance dispersal. High levels of gene flow have been recorded in a variety of vent fauna and may be a prerequisite for success of species found in the ephemeral habitats associated with regions of sea-floor hydrothermal activity.  相似文献   

10.
Abstract: The Coral Triangle is the global center of marine biodiversity; however, its coral reefs are critically threatened. Because of the bipartite life history of many marine species with sedentary adults and dispersive pelagic larvae, designing effective marine protected areas requires an understanding of patterns of larval dispersal and connectivity among geographically discrete populations. We used mtDNA sequence data to examine patterns of genetic connectivity in the boring giant clam (Tridacna crocea) in an effort to guide conservation efforts within the Coral Triangle. We collected an approximately 485 base pair fragment of mtDNA cytochrome c oxidase 1 (CO1) from 414 individuals at 26 sites across Indonesia. Genetic structure was strong between regions (φST=0.549, p < 0.00001) with 3 strongly supported clades: one restricted to western Sumatra, another distributed across central Indonesia, and a third limited to eastern Indonesia and Papua. Even within the single largest clade, small but significant genetic structure was documented (φST=0.069, p < 0.00001), which indicates limited gene flow within and among phylogeographic regions. Significant patterns of isolation by distance indicated an average dispersal distance of only 25–50 km, which is far below dispersal predictions of 406–708 km derived from estimates of passive dispersal over 10 days via surface currents. The strong regional genetic structure we found indicates potent limits to genetic and demographic connectivity for this species throughout the Coral Triangle and provides a regional context for conservation planning. The recovery of 3 distinct evolutionarily significant units within a well‐studied taxonomic group suggests that biodiversity in this region may be significantly underestimated and that Tridacna taxa may be more endangered than currently recognized.  相似文献   

11.
Genetic variation was examined in Helonias bullata , a threatened perennial plant species that occurs in isolated wetland habitats. Fifteen populations representing the species' geographic range were sampled. Genetic diversity was low for the species ( H es = 0.053) as well as within populations ( H ep = 0.029). Of the 33 allozyme loci examined, 11 (33%) were polymorphic, while on average only 12.8% (4) of the loci were polymorphic within populations. The number of alleles per polymorphic locus was 2.36 for the species and averaged 2.09 across populations. For every genetic parameter calculated, variation in H. bullata was lower than that typically found for narrowly distributed plant species. The lowest levels of genetic diversity were found in northern areas that were colonized following the last glacial epoch. The number of genotypes detected per population ranged from three to 21, with a mean of 13 for this clonally reproducing species. We found a relatively high proportion of total genetic diversity (30.6%) among populations and a significant correlation (p < 0.002) between genetic distance and geographic distance. Genetic drift phenomena appear to play a major role in the population genetics of this species. Anomalously, several populations that appeared most limited in size and vigor were genetically most variable, perhaps because they represent older, relictual populations. Life-history characteristics of H. bullata coupled with low levels of genetic diversity and the degradation and disappearance of wetlands threaten the existence of this species.  相似文献   

12.
Increases in temperature can shorten planktonic larval durations, so that higher temperatures may reduce dispersal distances for many marine animals. To test this prediction, we first quantified how minimum time to settlement is shortened at higher temperatures for the ascidian Styela plicata. Second, using latitude as a correlate for ocean temperature and spatial genetic structure as a proxy for dispersal, we tested for a negative correlation between latitude and spatial genetic structure within populations, as measured by anonymous DNA markers. Spatial genetic structure was variable among latitudes, with significant structure at low and intermediate latitudes (high and medium temperatures) and there was no genetic structure within high-latitude (low temperature) populations. In addition, we found consistently high genetic diversity across all Australian populations, showing no evidence for recent local bottlenecks associated S. plicata’s history as an invasive species. There was, however, significant genetic differentiation between all populations indicating limited ongoing gene flow.  相似文献   

13.
Genetic differentiation and genetic variability of sporophytic and gametophytic populations of Gelidium arbuscula (Bory) from three localities sampled in 1989 and 1990 in the Canary Islands (Spain) were examined by isozyme electrophoresis. Twenty-three to 29 putative alleles corresponding to 22 gene loci, were compared. High deviations in Hardy-Weinberg equilibrium, and significant differences between allelic frequencies of sporophytic and gametophytic subpopulations at the same locality were found, suggesting a predominant asexual reproduction of G. arbuscula. The genetic variability (percentage of polymorphic loci, mean number of alleles per locus and average gene diversity) of haploid subpopulations was lower than that of diploid subpopulations at all three localities, being the lowest described for seaweeds. No correlation between genetic and geographical distance was found. The high genetic differentiation coefficient between all subpopulations suggests a very reduced genetic flow between subpopulations of the same and of different localities. These results suggest that the genetic structure of the populations of G. arbuscula from the Canary Islands is due to a founder-effect combined with a predominance of asexual reproduction. This is the first report comparing allelic frequencies between sporophytic and gametophytic subpopulations of seaweeds.  相似文献   

14.
The seaweed Sargassum polyceratium Montagne inhabits a broad spectrum of subtidal and intertidal habitats. Genetic diversity and spatial genetic structure were examined within and among 12 stands using random amplified polymorphic DNA (RAPD) phenotypes. Data were analyzed using analysis of molecular variance (AMOVA) and Shannon's information measure. In both analyses, 60-75% of the variation occurred within stands and 25-40% between stands. These values are consistent with out-crossing, high-dispersal species. Significant differentiation was found among bays ca. 25 km apart (Shannon's G'st averaged 0.37 and pairwise AMOVA Kst values averaged 0.272) and among stands 150-200 m apart within bays (AMOVA Kst values averaged 0.149). Effects of shore (windward vs. leeward), depth, and bay on population structure were tested. These analyses revealed that the factor depth is confounded with shore, and that bays show significant differentiation from each other but are not completely isolated from one another. Mantel tests for differentiation-by-distance were significant along both sides of the island but stronger along the windward side. A neighbor-joining analysis of genetic distances among stands showed that the effects of currents around both tips of the island were especially important for shallow populations. For S. polyceratium, depth and bay promote population differentiation along shores, yet dispersal around the tips of the island simultaneously connects these populations to varying degrees. This study highlights the importance of investigating the relative contribution of habitat factorsin relation to island-scale population structure.  相似文献   

15.
Larval shell morphology in fossil and present-day gastropods is often used to infer modes of larval development and levels of dispersal. Dispersal ability influences not only genetic population structure, but also is thought to influence a species' geographical range and evolutionary duration. We tested these predictions in Bullia digitalis, a sandy-beach whelk, by examining genetic variability at 33 protein-coding loci in nine samples (N=739) taken in 1984 to 1985 at localities extending over about three-quarters of the geographical range of this species in southern Africa. Females of this species deposit eggs into benthic or brooded capsules in which larvae develop through the trochophore and veliger stages to emerge as crawling juveniles. Scanning electron micrographs confirmed a protoconch morphology typical for gastropods with lecithotrophic larval development. Contrary to expectations, subpopulations of B.␣digitalis had high levels of variability (H=0.102) and lacked a genetically-fragmented structure (=0.013). The lack of a genetically-subdivided population structure would not have been correctly inferred, if this species were known only from well-preserved fossil shells. Indirect estimates of migration between populations based on and the island model of migration, which assumes drift-mutation equilibrium, ranged between 19 and 23 individuals per generation. Either an undescribed mechanism of dispersal facilitates gene flow between populations, or the geographical range of this species has recently expanded to produce the appearance of high levels of gene flow. Gene-frequency distributions showed that relative to four other species of Bullia, populations of B. digitalis were in mutation-drift disequilibrium, with a significant excess of low-frequency alleles that is consistent with a recent rapid expansion from a small population. Also contrary to expectations, this species has a large geographical range (2 400 km) and an apparently long evolutionary history extending 5 to 20 million years, as estimated from an allozyme phylogeny with four other species of Bullia. Received: 15 January 1997 / Accepted: 28 January 1997  相似文献   

16.
Pelagic dispersal of larvae in sessile marine invertebrates could in principle lead to a homogeneous gene pool over vast distances, yet there is increasing evidence of surprisingly high levels of genetic differentiation on small spatial scale. To evaluate whether larval dispersal is spatially limited and correlated with distance, we conducted a study on the widely distributed, viviparous reef coral Seriatopora hystrix from the Red Sea where we investigated ten populations separated between ~0.150 km and ~610 km. We addressed these questions with newly developed, highly variable microsatellite markers. We detected moderate genetic differentiation among populations based on both F ST and R ST (0.089 vs. 0.136, respectively) as well as considerable heterozygote deficits. Mantel tests revealed isolation by distance effects on a small geographic scale (≤20 km), indicating limited dispersal of larvae. Our data did not reveal any evidence against strictly sexual reproduction among the studied populations.  相似文献   

17.
The origin of the deep-sea benthic fauna is poorly understood and represents an enormous gap in our understanding of basic evolutionary phenomena. One obstacle to studying evolutionary patterns in the deep sea has been the technical difficulty of measuring genetic variation in species that are typically minute, rare, and must be recovered from extreme depths. We used molecular genetic techniques to quantify variation in the 16S rRNA mitochondrial gene within and among populations of the common protobranch bivalve Deminucula atacellana (Schenck, 1939). We analyzed 89 individuals from nine samples collected in the 1960s along a depth gradient from 1100 to 3800 m in the western North Atlantic. Genetic variability within populations is much lower than between populations, and peak haplotype numbers occur near the center of its depth distribution. Continental slope (<2500 m) and rise (>2500 m) populations were genetically distinct despite the lack of any obvious topographic or oceanographic features that would impede gene flow. These findings indicate that the deep-sea macrofauna can have strong population structure over small (134 km) spatial scales, similar to that observed in shallow-water and terrestrial organisms. This surprisingly high biodiversity at the genetic level affords the potential for adaptation and evolutionary diversification, the ultimate historical causes of high species diversity in the deep-sea benthos. Received: 24 July 1997 / Accepted: 26 January 1998  相似文献   

18.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

19.
Geological phenomena (e.g. drastic sea level fluctuations during the Quaternary Ice Age in the Northern Hemisphere) have been demonstrated to intensively affect the biogeographic patterns and tempo-spatial compositions of genetic diversity of marine organisms. However, it is poorly understood whether contemporary factors such as oceanic surface currents have also shaped inter-regional population genetics of specific coastal marine flora, with or without limited dispersal capability. In this study, we determined mtDNA Cox1 gene sequences of the brown seaweed Sargassum fusiforme from nine populations along the Chinese coast and one population from the west coast of South Korea, in an effort to understand what factors are contributing to their current genetic structure and geographic distribution patterns. Genetic analyses indicated a deep genetic break between the Yellow-Bohai Sea (YBS) and the other two marginal seas, the East China Sea (ECS) and the South China Sea (SCS). In particular, the amount of genetic exchange from the SCS to each of the ECS and YBS was significantly higher than that from the opposite directions. Our analyses supports the hypothesis that biogeographic patterns of genetic variation in S. fusiforme are probably an interactive consequence of post-glacial colonization from two scattered refugia driven by the offshore Kuroshio Current and asymmetric gene flow among adjacent sea margins.  相似文献   

20.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号