首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The radiological impact of radionuclides released to the terrestrial environment is usually predicted with mathematical models in which the transfer of radionuclides from soil to the plant is described with the transfer factor (TF). This paper questions the validity of the protocols proposed by the International Atomic Energy Agency to measure TF in the field and in greenhouses conditions. We grew maize (Zea mays L.) both in the field after a surface application of radionuclides ((54)Mn, (57)Co, (65)Zn, and (134)Cs) and in a greenhouse with the same soil that has received the same fertilization and that had been previously sieved and homogeneously labeled with the same radionuclides before being repacked in pots. The analysis of the displacement of radionuclides in the field soil profile showed a higher concentration of the surface-applied radionuclides in the preferential flow path (PFP) in comparison to the soil matrix indicating that they infiltrated heterogeneously in the soil profile due to the structure-induced non-uniform water flow. A significantly higher recovery of (57)Co and (134)Cs was observed in the plants grown in the field soil, whereas no differences in the recovery of (54)Mn and (65)Zn between the two experiments were detected. These results suggest that (i) under field conditions the soil-to-plant transfer of radionuclides that co-exist as stable elements present at low concentrations in the soil and in the plant is higher than that measured under greenhouse conditions and (ii) the implicit assumption made when calculating the TF (that radionuclides are homogeneously distributed in the soil profile) is not valid, thereby preventing the calculation of an average concentration to obtain the TF parameter.  相似文献   

2.
The purpose of the study is to use soil particles labeled with the radioactive tracer cesium-134 (134Cs) as a method for studying soil erosion and sedimentation pattern within a small catchment with buffer zones. Cesium is adsorbed to soil particles, and by measuring changes in the 134Cs activity on the soil surface, erosion, sedimentation, and pathways for particles can be traced. A harrowed area was surface-contaminated with 134CsCl, while the buffer zone was left uncontaminated. A grid net in the tilled plot and buffer zone was established for in situ measurements of the 134Cs activity after major runoff events from October 1993 to May 1996. In addition, 134Cs activity and suspended solids in runoff were followed during the events. At the end of the experiment, the vertical distribution of 134Cs in soil profiles and uptake of 134Cs in vegetation within the buffer zone were determined. At the end of the experiment, about 54% of the applied tracer remained at the soil surface. Surface soil erosion occurred relatively uniformly across the hillslope due to sheet flow. Most of the tracer was transported vertically into the soil profile, probably during the first heavy rainfall 3 wk after application when the soil was newly tilled. Sedimentation occurred in the upper part of the buffer zone. The correlation between suspended particles in runoff and 134Cs activity was good (R2=0.76). The study also demonstrates the benefit of utilizing 134Cs2+ tracer for investigating transport pathways for contaminated partic1les within a hillslope system without disturbing the surface soil system.  相似文献   

3.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

4.
The uptake of 109Cd and 65Zn and their stable isotopes by ryegrass (Lolium multiflorum Lam.), grown on two different soil types, was investigated in climatically controlled growth chambers at 9 and 21 degrees C. The soils were treated with 0 and 4% organic matter (pig [Sus scrofa] manure) and spiked with 109Cd and 65Zn before sowing. The organic matter addition resulted in increased uptake of the 109Cd, Cd, and Zn by ryegrass, but the uptake of 65Zn was decreased. The latter effect was ascribed to isotopic dilution of 65Zn as the amount of stable Zn in the plant tissues increased with the organic matter addition. The effect of temperature was more pronounced than that of organic matter addition, and the uptake of both 109Cd and 65Zn and their stable isotopes was higher in ryegrass grown at 21 degrees C than that grown at 9 degrees C. Results from fractionation and speciation analysis of soil cadmium and zinc were correlated with plant uptake, and there was a good consistency between observed plant uptake and the physico-chemical forms of cadmium and zinc in soil and soil solution presumed to be plant available.  相似文献   

5.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   

6.
This study investigated the degree to which human activities through urbanization influence heavy metal concentrations in a suburban landscape in Ankeny, IA. Residential areas from different years in nine time periods of development were identified from aerial photos. Soil cores were collected from the center of the front yard of 10 randomly selected homes. Cores were subdivided into 0- to 5-, 5- to 10-, and 10- to 20-cm increments from a composite of five cores. The soils were analyzed for organic C, pH, and total Cd, Co, Cr, Cu, Ni, Pb, and Zn. Results showed that organic C increased and pH decreased with time, and that there was a general decreasing trend in heavy metal concentrations from the pre-1939 period until 1983-1990, after which there was a sharp increase in the concentrations of most of the metals. The mean Cu concentration ranged from 21 mg kg(-1) for the pre-1939 time period of development to 14.9 mg kg(-1) for the recent period of development (2003-2005). Nickel concentrations increased significantly with depth with means of 21.3 mg kg(-1) at depth 0 to 5 cm, 22.5 mg kg(-1) at depth 5 to 10 cm, and 23.0 mg kg(-1) at depth 10 to 20 cm. The concentrations of heavy metals were significantly intercorrelated, except Zn, suggesting their coexistence as mineral constituents or common contamination source. The concentrations of Cu and Pb in some locations could be due to anthropogenic inputs or higher organic matter content in soils adjacent to older homes. There appears to have been a source that caused an increase in Cd, Cr, Co, Cu, Pb, and Ni concentrations in soil adjacent to homes built between 1983 and 1990.  相似文献   

7.
The release of trace metals (Mn, Ni, Co, Cu, Zn, Pb, and Cd) and inorganic compounds (As) from initially anoxic Trepangier Bayou sediments, Louisiana and the sources of the released metals were investigated. After 1 to 2 d aeration, significant amounts of trace metals (Mn, Zn, Cd, Ni, and Co) were released to the aqueous phase with increased acidity, primarily due to the oxidation of acid-volatile sulfide and ferrous iron and iron sulfide minerals. The addition of a bacterial inhibitor, NaN,, to the Trepangier sediment during resuspension inhibited metal release, suggesting that microbial catalysis can regulate metal mobilization during sediment resuspension. In a well buffered system, oxidation of iron sulfides alone did not appear to induce trace metal release. Moreover, when Trepangier sediment was resuspended in anoxic conditions at neutral pH, <1% of the trace metal content was released, whereas a significant release of metal was observed under acidic anoxic conditions. Although oxidation of iron sulfide minerals is an essential prerequisite for the release of Zn, Co, Cd, and Ni, carbonates and oxides also play a role. The trace metals and inorganic compounds investigated could be classified into three groups according to their release characteristics: (i) Mn, Zn, Cd, Ni, and Co; (ii) Fe, Pb, and As; and (iii) Cu. The groupings appeared to depend on the sources of compounds and their relative affinity, after oxidation, to iron oxyhydroxides or organic matter.  相似文献   

8.
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.  相似文献   

9.
We conducted a laboratory study to assess the efficiency of nonionic and anionic surfactants in combination with a sparing quantity of ethylenediaminetetraacetate (EDTA) to simultaneously extract heavy metals (HMs) and polychlorinated biphenyl (PCB) compounds from a field-contaminated soil. A soil wash that mobilized both HMs and PCBs was combined with back-extraction with hexane to remove PCBs from the aqueous wash. The aqueous washing suspension was then regenerated by precipitation of the HMs induced by corrosion and hydrolysis of zero-valent Mg to provide a cleaned soil and innocuous extract. Finally, the washing suspension was recycled twice to mobilize more contaminants from the soil particulate fraction. After ultrasonic equilibration, EDTA in admixture with a nonionic surfactant did not appreciably change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe Mn, Ni, and Zn), but did increase the recovery of Cu and Pb. The release of EDTA from HM complexes was efficient for most metals (99%) but was influenced by the chemical characteristics of the surfactant. The EDTA recovery (62-65%) after three cycles of soil washing, hexane back-extraction, and Mg(0) treatment was similar for all reagent combinations. In toto, these studies demonstrate that after treatment with ultrasound, selected heavy metals can be coextracted efficiently from soil with a single washing suspension containing EDTA and a nonionic surfactant.  相似文献   

10.
Trace and minor element concentrations differ in animal tissues as the result of the surrounding environment (feeding plants, soil contaminated with food and drinking water) and animal absorption of these elements. Concentrations of Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn were determined from different tissues of camel (inter-costal, scapula, sirloin, flank, front knuckle and front limb) from the semi-arid areas of the Aswan desert (Wadi El-Allaqi) and from Aswan city, Egypt. The study included an assessment of these same elements in the desert and city plants used as food by the camels and in soils from the study areas. The results reveal that camel tissues from the desert areas exhibited higher concentrations of Na, Mg, K, Au, Ag, Cu, Co and Zn than in those of the city camels. These higher levels of element are because of the high concentrations of the same elements in the desert plants and soil of the desert area. This, in turn, depends upon the geological formation differences between the desert area and the city area. Camel tissues appear to concentrate high levels of Mn, Ni, Co and Mg in the scapula while flank portions concentrate high levels of Mg and K. The levels of elements in the camel tissues under study were within the recommended safety baseline levels for camel health and human use, as well as within the appropriate limits in the desert and city plants for camel use.  相似文献   

11.
This paper summarizes the vertical distributions of 22Na, 137Cs, and 60Co above controlled water tables in deep and shallow lysimeters during a four-year experiment. The activity concentration profiles were all determined at the time of harvest of a winter wheat (Triticum aestivum L. cv. Pastiche) crop. Activity concentrations in different crop tissues were determined and crop uptake expressed as both an inventory ratio (IR) and a transfer factor (TFw), weighted to account for root and radionuclide distributions within the soil profile. Experimental variates were subjected to analysis of variance to determine the single and combined effects of the soil depth and the year of the experiment on the results obtained. Each radionuclide showed significant variations in activity concentration with soil depth, but the significance of these variations from year to year was dependent on radionuclide. A distinction in the behavior of weakly sorbed (22Na) and more highly sorbed (137Cs and 60Co) radionuclides was observed. The former exhibited significant variations in its distribution in the soil profile from year-to-year whereas the latter did not. Relatively high TF, values for 22Na were maintained throughout the experiment, whereas for 137Cs and 60Co, the highest TFw values were recorded in 1990 followed by a significant decline in 1991, with TFw remaining low in 1992 and 1993. The TFw values were, in general, significantly higher for deep lysimeters than for shallow lysimeters. This is thought to provide evidence of enhanced radionuclide absorption by the relatively small fraction of roots in the vicinity of the deeper water table.  相似文献   

12.
Concentrations of Fe and 12 trace elements in peat from ombrotrophic bogs were used to estimate the atmospheric deposition of these elements on a temporal and spatial scale. Peat samples were collected at 21 different sites in Norway encompassing large geographical differences in marine influence and air pollution. The study demonstrates that surface peat is an excellent medium to study geographical differences in heavy metal deposition, provided that effects of the surface plant cover are properly considered. Long-range atmospheric transport of pollutants is the main source for As, Cd, Pb, Sb, and Zn, and to a lesser extent for Cu and Se. Biogenic emissions from the ocean appear to be the main source of Se to the peat. The metals Co, Cr, Fe, and Ni are mainly associated with wind-blown local soil dust. Surface enrichment of Mn, and in part Zn, is mainly caused by nutrient circulation between the surface peat and vascular plants growing on it. Deposition of marine salts appears to be the main reason for lower Mn concentrations in the peat near the coast.  相似文献   

13.
ABSTRACT: The concentration of 10 [titanium (Ti), manganese (Mn), copper (Cu), chromium (CR), zinc (Zn), arsenic (As), selenium (Se), cobalt (Co), cadmium (Cd), and mercury (Hg)] toxic elements were measured in the water, benthic sediment, plants, invertebrates, and vertebrates of an ash basin and its drainage system at a coal-fired power plant of the Savannah River Project, Aiken, S.C., over a period of two years. During 12 months of this period the basin was essentially filled and little settling of ash occurred. In the remaining 12 months, dredging had been completed, adequate settling occurred and most of the effluent turbidity was removed. All elements were more concentrated in sediment and biota than in water, and five (Mn, Cu, As, Zn, and Se) were biomagnified by at least one biotic component as compared to concentration in benthic sediment. Plants had high accumulations of Ti, Mn, As, and Hg; invertebrates had high accumulations of Co, Hg, Cu, Cr, Cd, and As; and vertebrates greatly biomagnified Se and Zn. The streamlined biotic community of the system accomplished major removal of Mn, Zn, As, Se, and Cd from the effluent. The magnitude of bioaccumulation of Ti, Mn, Zn, As, Se, Cd, and Hg was increased during the period of adequate settling in the basin.  相似文献   

14.
The application of organic wastes to improve soil physical characteristics in mechanized vineyards planted after land levelling is becoming a common practice in Mediterranean areas. It may be useful as an additional source of organic matter and nutrients, but these wastes could also have negative effects due to their metal content. The aim of the study was to evaluate the influence of compost application on soil metal contents in mechanized vineyard soils of the Spanish Mediterranean area, where this practice is repeated every three years. The study was carried out in a ten-year-old vineyard where the main soil type is Typic Calcixerept. Composted cattle manure was applied in alternate rows, at a rate of 40 Mgha(-1) dry-weight. Nine sampling points were located along the slopes of two plots: a levelled plot prepared for mechanization with large soil disturbance movements within the plot, and a plot of undisturbed soil. At each location, soil samples were taken in both treated and untreated soils. Total concentrations (digestion with aqua regia) and the extractable DTPA (Diethylene-triaminepentacetic)-CaCl2-TEA (Triethanolamine) fractions of Cu, Zn and Mn were analyzed in each sample. For Cu and Zn, the initial concentration was higher in the undisturbed plot. In both cases, total Cu and total Zn were positively affected by manure input and the concentration in treated soils was significantly higher than in untreated soil. For Mn, the initial concentration was higher in disturbed soils than in undisturbed ones, and although in both scenarios the concentrations increased with manure, no significant differences were found between treated and untreated soils. The extractable fraction also increased in treated versus untreated soils, although for Cu and Mn the extractable/total metal ratio was similar in treated and untreated soils. After one compost application, total metal contents increased significantly, particularly for Zn. Most of those metals are accumulated in the soil, due to the soil characteristics.  相似文献   

15.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

16.
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0–20 and 30–50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0–20 cm; and Cr, Ni, Cu, Cd, and Zn at 30–50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.  相似文献   

17.
A growth room experiment was conducted to evaluate the bioavailability of Cu, Mn, Zn, Ca, Fe, K, Mg, P, S, As, B, Cd, Co, Cr, Hg, Mo, Na, Ni, Pb, and Se from a sandy loam soil amended with source-separated municipal solid waste (SSMSW) compost. Basil (Ocimum basilicum L.) and Swiss chard (Beta vulgaris L.) were amended with 0, 20, 40, and 60% SSMSW compost to soil (by volume) mixture. Soils and compost were sequentially extracted to fractionate Cu, Pb, and Zn into exchangeable (EXCH), iron- and manganese-oxide-bound (FeMnOX), organic-matter (OM), and structurally bound (SB) forms. Overall, in both species, the proportion of Cu, Pb, and Zn levels in different fractions followed the sequence: SB > OM > FeMnOX > EXCH for Cu; FeMnOX = SB > OM > EXCH for Pb; and FeMnOX > SB = EXCH > OM for Zn. Application of SSMSW compost increased soil pH and electrical conductivity (EC), and increased the concentration of Cu, Pb, and Zn in all fractions, but not EXCH Pb. Basil yields were greatest in the 20% treatment, but Swiss chard yields were greater in all compost-amended soils relative to the unamended soil. Basil plants in 20 or 40% compost treatments reached flowering earlier than plants from other treatments. Additions of SSMSW compost to soil altered basil essential oil, but basil oil was free of metals. The results from this study suggest that mature SSMSW compost with concentrations of Cu, Pb, Mo, and Zn of 311, 223, 17, and 767 mg/kg, respectively, could be used as a soil conditioner without phytotoxic effects on agricultural crops and without increasing the normal range of Cu, Pb, and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils needs to be carefully considered.  相似文献   

18.
The understanding of the processes that control the behavior of radionuclides in crops can support policymakers to take actions to protect the environment and safeguard human health. Data concerning the behavior of radionuclides in fruits are limited. Strawberry (Fragaria x ananassa Duchesne) plants were contaminated on the aboveground part by sprinkling an aqueous solution of 134Cs and 85Sr at three growing stages: predormancy, anthesis, and beginning of ripening. Intercepted activity was more affected by the posture and physical orientation of leaves rather than by leaf area or biomass. Fruit interception ranges from 0.2 to 1.2% of the sprinkled activity. Translocation coefficients from leaf to fruit are on the order of 10(-4) for 134Cs and 10(-5) for 85Sr. Translocation reaches its highest intensity between anthesis and ripening. If deposition occurs when plants are bearing fruits, the fruit activity will be affected by the activity initially deposited on the fruit surfaces. This is important for 85Sr as it is not translocated in the phloem. The loss of the dead leaves at the resumption of growth causes high plant decontamination, but a fraction of both radionuclides remains in the storage organs, roots, and shoots, which is retranslocated to fruits in the following spring. The values of the environmental half-time, t(w), after deposition at predormancy are 114 d for 134Cs and 109 d for 85Sr. Cesium-134 tends to be allocated to fruits, while 85Sr remains in leaves and crowns. Translocation of radionuclides to roots results in soil contamination.  相似文献   

19.
分别用三种不同的酸消解方法进行土壤标准样品的前处理,用原子吸收分光光度法测定其中铜、铅、锌、镉、镍、锰、总铬元素的含量。结果表明,电热板/硝酸-过氧化氢-氢氟酸消解方法耗酸量少,消解时间短,适用于土壤中铜、铅、锌、镉、镍、锰元素的前处理,相对标准偏差为1.0%~5.0%;而使用电热板/硝酸-硫酸-氢氟酸方法针对土壤中总铬元素进行消解前处理,准确度更高,相对标准偏差为2.7%~5.1%。  相似文献   

20.
Tannery effluents and relevant ground water and soil samples collected from various tanning industries of Peshawar were analyzed for Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn by the AAS method. The metal concentration data for the three media are reported in terms of basic statistical parameters, metal-to-metal correlations and linear regression analyses. Metal distributions in the three media were quite divergent and showed non-normal distributions with high standard deviation and skewness parameters. Sodium exhibited the highest mean levels of 1,277mg/L, 881mg/L and 12,912mg/kg in the effluent, ground water and soil samples, respectively. Among other metals, Cr concentrations were 410mg/L, 0.145mg/L, 100mg/kg and Ca, 278mg/L, 64.8mg/L, and 2,285mg/kg in the effluent, ground water and soil samples, respectively. Some significant correlations were observed between effluent and soils in terms of Na, Cr, Ni, Co and Pb. The ground water-soil interrelationship suggested that Na levels in the soil and ground water were significantly correlated with each other (r=0.486, P<0.01). Similarly, Cr in the soil is strongly correlated with Ca in ground water (r=0.486, P<0.01). These results were duly supported by the linear regression analysis of data. The source identification studies conducted using Principal Component Analysis (PCA) and Cluster Analysis (CA) evidenced that ground water and soil were being contaminated by the toxic metals emanating from the tannery effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号