首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In many semi-arid environments of Mediterranean ecosystems, white poplar (Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash (Fraxinus angustifolia Vahl.) and hawthorn (Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.  相似文献   

2.
The exotic trees Ailanthus altissima, Robinia pseudoacacia, Acer negundo and Elaeagnus angustifolia coexist with the native trees Fraxinus angustifolia and Ulmus minor in river banks of central Spain. Similarly, the exotic trees Acacia dealbata and Eucalyptus globulus co-occur with the natives Quercus pyrenaica and Pinus pinaster in Northwest Spain. We aimed to identify the environmental conditions that favour or hamper the establishment success of these species. In spring 2008, seeds of the studied species were sown under an experimental gradient of light (100, 65, 35, 7% of full sunlight) combined with three levels of soil moisture (mean soil water potential = −0.97, −1.52 and −1.77 MPa.). During the first growing season we monitored seed emergence and seedling survival. We found that the effect of light on the establishment success was stronger than the effect of soil moisture. Both exotic and native species of central Spain showed a good performance under high light, A. negundo being the most shade tolerant. Water shortage diminished E. angustifolia and A. altissima success. Among NW Spain species, A. dealbata and P. pinaster were found to be potential competitors for colonizing high-irradiance scenarios, while Q. pyrenaica and E. globulus were more successful under moderate shade. High soil moisture favoured E. globulus but not A. dealbata establishment. These results contribute to understand some of the factors controlling for spatial segregation between coexisting native and exotic tree species, and can help to take decisions orientated to the control and management of these exotic species.  相似文献   

3.
Gleditsia triacanthos and the native dominant Lithraea ternifolia in montane forests of central Argentina, considering life history and demographic traits of both the alien and the native species and different site conditions for population growth (good and bad sites). Matrix models are applied to project the consequences of differences in vital rates for population growth. Analyzing these models helps identify which life cycle transitions contributed most to population growth. Obtained population growth rates are considered to assess predicted rates of spread using the reaction-diffusion (R-D) model. G. triacanthos presents many of the life history traits that confer plants high potential for invasiveness: fast growth, clonal and sexual reproduction, short juvenile period, high seed production, and high seed germinability. These traits would ensure G. triacanthos invasive success and the displacement of the slow-growing, relatively less fecund native L. ternifolia. However, since disturbance and environmental heterogeneity complicate the invasibility pattern of G. triacanthos in these montane forests, the outcome of the invasion process is not straightforward as could be if only life history traits were considered. Great variation in demographic parameters was observed between populations of each species at good and bad sites. Though both good and bad sites signified increasing or at least stable populations for G. triacanthos, for L. ternifolia bad sites represented local extinction. Analyzing the results of matrices models helps design the optimal management for the conservation of L. ternifolia populations while preventing the invasion by G. triacanthos. The predicted asymptotic rate of spread for G. triacanthos at the good site was fourfold greater than the predicted one for L. ternifolia, although the difference was much smaller considering the bad site. The usefulness of the R-D model to study this invasion system is discussed.  相似文献   

4.
Habitat fragmentation due to human activities is one of the most important causes of biodiversity loss. In Mediterranean areas the species have co-evolved with traditional farming, which has recently been replaced for more severe and aggressive practices. We use a methodological approach that enables the evaluation of the impact that agriculture and land use changes have for the conservation of sensitive species. As model species, we selected Linaria nigricans, a critically endangered plant from arid and semiarid ecosystems in south-eastern Spain. A chronosequence of the evolution of the suitable habitat for the species over more than 50 years has been reconstructed and several geometrical fragmentation indices have been calculated. A new index called fragmentation cadence (FC) is proposed to quantify the historical evolution of habitat fragmentation regardless of the habitat size. The application of this index has provided objective forecasting of the changes of each remnant population of L. nigricans. The results indicate that greenhouses and construction activities (mainly for tourist purposes) exert a strong impact on the populations of this endangered species. The habitat depletion showed peaks that constitute the destruction of 85% of the initial area in only 20 years for some populations of L. nigricans. According to the forecast established by the model, a rapid extinction could take place and some populations may disappear as early as the year 2030. Fragmentation-cadence analysis can help identify population units of primary concern for its conservation, by means of the adoption of improved management and regulatory measures.  相似文献   

5.
The objectives of this study were to evaluate the allelopathic effects of Chinese privet (Ligustrum sinense Lour.) extract on native seeds and cuttings and to assess the survivability of native plants in a flooded riparian corridor. Field sites occupied the Trinity River floodplain in southeast Dallas County, Texas. Eight native species were evaluated. They were soapberry, red mulberry, persimmon, elderberry, beautyberry, coralberry, mustang grape, and heartleaf peppervine. From this study, we concluded that:
  • Truncating privet at ground level and applying equal parts of glyphosate and water to the stump effectively kills the plant;
  • Once removed, privet does not curtail establishment of native plants;
  • A 60‐day (d) flood killed most plants, with red mulberry being the most resilient;
  • A 1% leaf and berry extract from privet significantly reduced soapberry seed germination; and
  • A 1% extract from various parts of privet did not significantly affect root growth from cuttings.
  相似文献   

6.
Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities (P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities (P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance (A = 0.112) and composition varied between community groups (P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.  相似文献   

7.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

8.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

9.
Riparian functions such as the recruitment of wood to streams take decades to recover after a clear-fell harvest to the stream edge. The implications of two sets of riparian management scenarios on the short- and long-term recruitment of wood to a hypothetical stream (central North Island, New Zealand) were compared through simulation modeling. In the first set (native forest buffer), a designated treeless riparian buffer was colonized by native forest species after a pine crop (Pinus radiata) had been harvested to the stream bank. In the second set (pine to native forest buffer), native forest species were allowed to establish under the pine canopy in a designated riparian buffer. In general, the volume of wood was greater in streams with wider buffers (5-m to 50-m) and this effect increased with forest age (800 years). The pine to native forest buffer supplied more wood to the stream more quickly, and matched the long-term supply to the stream from the native forest buffer. For the native forest buffer, total wood volume was minimal for the first 70 years and then increased uniformly for the remainder of the simulation. In contrast, the pine to native forest buffer produced a bimodal response in total wood volume with the initial sharp peak at year 100 attributed to pine recruitment and a second more gradual peak lasting for the rest of the simulation, which was similar to levels in the native forest simulations. These results suggest that existing plantations could be an important source of wood to the stream during the first 100+ years of native forest development.  相似文献   

10.
Insect neurobiology and cognition are most fully understood through studies on European honeybees (Apis mellifera ssp.; Hymenoptera: Apidae). Karl von Frisch (1886?C1982) became a Nobel Laureate in Medicine and Physiology (1973) for his pioneering research on honeybee behaviour, learning and social communication (von Frisch Tanzsprache und Orientierung der Bienen. Springer, Berlin,1965, The dance language and orientation of bees. Harvard University Press, Cambridge,1967). His enduring work stimulated numerous prominent scientists, including Martin Lindauer (1918?C2008) who was mentor to R. M., and whose nomination provided P. K. with a DAAD fellowship to work with his team in the Institut für Neurobiologie of the Freie Universit?t Berlin in 1994. Honeybees are the most important managed pollinators of crop plants and responsible for estimated billions of dollars worth of food production annually. Although these insects make excellent subjects for basic research, understanding their biology often has immediate practical implications. Honeybees, and beekeeping, around the world appear to be facing serious problems to such a grave extent that the popular media are full of stories about their demise and the potential consequences to human food security. How honeybees perceive their world, especially the flowers they pollinate, and how they react to stresses in their environments (management, pathogens, parasites, pesticides, pollutants and landscape changes) are closely interlinked. Therefore, the relationships between basic and applied research become of immediate importance and may lead to a better handling of the ecological conditions under which honeybees perform their economically important contribution to the balance of nature.  相似文献   

11.
Re-vegetation is the main aim of ecological restoration projects, and in Mediterranean environments native plants are desirable to achieve successful restoration. In 1998, the burst of a tailings dam flooded the Guadiamar river valley downstream from Aznalcóllar (Southern Spain) with sludges that contained elevated concentrations of metals and metalloids, polluting soils and waters. A phytoremediation experiment to assess the potential use of native shrub species for the restoration of soils affected by the spillage was performed from 2005 to 2007, with soils divided into two groups: pH < 5 and pH > 5. Four native shrubs (Myrtus communis, Retama sphaerocarpa, Rosmarinus officinalis and Tamarix gallica) were planted and left to grow without intervention. Trace element concentrations in soils and plants, their extractability in soils, transfer factors and plant survival were used to identify the most-interesting species for phytoremediation. Total As was higher in soils with pH < 5. Ammonium sulphate-extractable zinc, copper, cadmium and aluminium concentrations were higher in very-acid soils, but arsenic was extracted more efficiently when soil pH was >5. Unlike As, which was either fixed by Fe oxides or retained as sulphide, the extractable metals showed significant relationships with the corresponding total soil metal concentration and inverse relationships with soil pH. T. gallica, R. officinalis and R. sphaerocarpa survived better in soils with pH > 5, while M. communis had better survival at pH < 5. R. sphaerocarpa showed the highest survival (30%) in all soils. Trace element transfer from soil to harvestable parts was low for all species and elements, and some species may have been able to decrease trace element availability in the soil. Our results suggest that R. sphaerocarpa is an adequate plant species for phytostabilising these soils, although more research is needed to address the self-sustainability of this remediation technique and the associated environmental changes.  相似文献   

12.
The spread of invasive species is a complex ecological process that is affected by both the biology of the species and the spatial structure of a landscape. The rice water weevil (Lissorhoptrus oryzophilus Kuschel), a notorious crop pest found in many parts of the world, is one of the most devastating invasive species in China, and has caused enormous economic losses and ecological damage. Little is known, however, as to how habitat and landscape features affect the spatial spread of this pest. Thus, the main goal of this study was to investigate the relationship between the observed spread pattern of L. oryzophilus and landscape structural factors in Zhejiang Province, China between 1993 and 2001. We quantified the invasive spread of the weevil in terms of both the proportion of infected area and spread distance each year as well as landscape structure and connectivity of rice paddies with landscape metrics. Our results showed that the spread of L. oryzophilus took place primarily in the southwest-northeast direction along coastal areas at a speed of about 36 km per year. The composition and spatial arrangement of landscape elements were key determinants of this unique spread pattern. In particular, the connectivity of early rice paddies was crucial for the invasive spread while other factors such as meteorological and geographical conditions may also have been relevant. To control the spread of the pest, we propose four management measures: (1) to implement a landscape-level planning scheme of cropping systems to minimize habitat area and connectivity for the pest, (2) to reduce the source populations at a local scale using integrated control methods, (3) to monitor and report invasive spread in a timely manner, and (4) to strengthen the quarantine system. To be most effective, all four management measures need to be implemented together through an integrated, multi-scaled approach.  相似文献   

13.
Pine plantations are an alternative to marginal agriculture in many countries, and are often presented as an option that improves biodiversity. However, these plantations can have adverse environmental effects if improperly managed. To evaluate the effect of forest management practices on biodiversity, the diversity, species richness, dominance and frequency of understory woody plant species in different forests of the Basque Country (northern Spain) were compared. Plantations of exotic conifers (Pinus radiata [D.] Don) of different ages were compared with deciduous forests of Quercus robur L. and Fagus sylvatica L. The effects of different types and intensities of management were taken into account. The differences observed were mainly conditioned by the intensity of forestry management, although the response varied according to forest type and age. In unmanaged pine plantations, the diversity and species richness of the understory increased rapidly after planting (while dominance decreased), remained stable in the intermediate age range, and reached a maximum in plantations more than 25 years of age. Management practices resulted in decreased understory diversity and species richness, as well as greater dominance. This was more pronounced in younger than in older stands. Moderate management, however, favored a greater diversity of the understory in deciduous forests. The species composition of the plantations and deciduous forests were different, the latter having a wider range of characteristic species. Knowledge of how forestry practices influence biodiversity (in terms of diversity, richness, dominance, and species composition) may allow predictions to be made about the diversity achievable with different management systems.  相似文献   

14.
We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse (Mus musculus) and the native western harvest mouse (Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow (Salix) cover and density and cottonwoods (Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.  相似文献   

15.
Waste from wastewater treatment plants (WWTP) for Helianthus annuus L. production may be a viable solution to obtain biodiesel. This study achieved two objectives: assess the agronomical viability of waste (wastewater and sludge) from the Alcázar de San Juan WWTP in central Spain for H. annuus L. production; use H. annuus L. seeds grown in this way to obtain biodiesel. Five study plots, each measuring 6 m × 6 m (36 m2), were set up on the agricultural land near the Alcázar de San Juan WWTP. Five fertilizer treatment types were considered: drinking water, as the control; treated wastewater; 10 t ha?1 of air-dried sewage sludge; 20 t ha?1 of air-dried sewage sludge; 0.6 t ha?1 of commercial inorganic fertilizer. Soil, irrigation water, sewage sludge, crop development and fatty acid composition in achenes oil were monitored. The 20 t ha–1 dose of sewage sludge proved effective to grow H. annuus L. with similar results to those grown with a commercial fertilizer. However, precautions should be taken when irrigating with wastewater because of high salinity and nutrient deficiency. Sunflower oil was composed mostly of linoleic and oleic acid. The remaining fatty acids were linolenic, estearic, nervonic, palmitoleic, and palmitic.  相似文献   

16.
Summary The biomass and productivity of a montane grassland of Garhwal Himalaya were estimated with the objectives to compare these values of the dominant exotic species, Eupatorium glandulosum HBK. (Asteraceae) with other species, and to compare the sites more dominated by this species with other study sites. The effect of dominance of this species on other species was undertaken because of its continuous spread in the grasslands of the Garhwal Himalaya causing replacement of some native grasses and economically important herbaceous plants. Out of six study sites, SW1, SW2, and NE1 were more dominated by Eupatorium glandulosum. Total net primary productivity (TNP) ranged from 1528.5 to 2163.4 g m−2 yr−1. Eupatorium glandulosum showed individual highest biomass on all the study sites, and the sites more dominated by this species showed higher values of primary productivity, thereby reducing the biomass and production of other species on these sites.  相似文献   

17.
Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI) to estimate the collective ecological impact of in situ alien species. IAI summarizes the frequency of occurrence and potential ecological impact (Invasiveness-Impact Score (I i )) of individual alien species for all aliens present in a particular location or community type. A component metric, I i , is based on ecological species traits (life history, ecological amplitude, and ability to alter ecosystem processes) that reflect mechanisms, which can increase impact to ecosystem structure and function. While I i is less complex than some other multi-metric rankings of alien impact, it compares well to these metrics and to qualitative judgments. IAI can be adapted for different ecological settings by modifying the set of species traits incorporated in I i to reflect properties likely to breach biotic and abiotic barriers or alter ecosystem function in a particular region or community type of interest. To demonstrate our approach, we created versions of IAI and I i , applicable to the diverse streamside vegetation of a river basin (19,631 km2) spanning low-elevation arid to mesic montane habitats in eastern Oregon, USA. In this demonstration effort, we (1) evaluate relationships of IAI to metrics describing invasion level, and (2) illustrate the potential utility of IAI for prioritizing alien species management activities and informing restoration goals.  相似文献   

18.
Management of ecological reserve lands should rely on the best available science to achieve the goal of biodiversity conservation. “Adaptive Resource Management” is the current template to ensure that management decisions are reasoned and that decisions increase understanding of the system being managed. In systems with little human disturbance, certain management decisions are clear; steps to protect native species usually include the removal of invasive species. In highly modified systems, however, appropriate management steps to conserve biodiversity are not as readily evident. Managers must, more than ever, rely upon the development and testing of hypotheses to make rational management decisions. We present a case study of modern reserve management wherein beavers (Castor canadensis) were suspected of destroying habitat for endangered songbirds (least Bell’s vireo, Vireo bellii pusillus, and southwestern willow flycatcher, Empidonax traillii extimus) and for promoting the invasion of an exotic plant (tamarisk, Tamarix spp.) at an artificial reservoir in southern California. This case study documents the consequences of failing to follow the process of Adaptive Resource Management. Managers made decisions that were unsupported by the scientific literature, and actions taken were likely counterproductive. The opportunity to increase knowledge of the ecosystem was lost. Uninformed management decisions, essentially “management by assertion,” undermine the long-term prospects for biodiversity conservation.  相似文献   

19.
An evaluation of woodland reclamation on strip-mined lands in east Texas   总被引:1,自引:0,他引:1  
We compared the composition and structural characteristics of reclaimed and native woody plant communities near Fairfield, Texas, to evaluate the effectiveness of woodland reclamation 3–11 years since establishment. Species composition, foliage density, canopy cover, and woody plant densities were recorded in plots randomly placed along transects bisecting blocks of reclaimed and native woodlands. During summer, vertical foliage densities at heights ≤2 m were similar among native and reclaimed areas. Foliage density and canopy cover declined in reclaimed blocks during winter, but remained relatively constant in native woodlands, where evergreens and vines were more common. Canopy cover was absent in reclaimed woodlands <6 years old but increased with age in 6 to 11-year-old blocks. These data indicated that approximately 27 years will be needed before trees in reclaimed blocks will achieve the stature of canopy trees in native woodlands. Reclaimed woodlands contained different woody plant species and had lower woody stem densities compared to native woodlands. On average, stem densities in reclaimed blocks were six times lower than densities in native woodlands. Comparisons with planting records indicate that survival of most commonly planted woody species was low. Only green ash(Fraxinus pennsylvanica), Russian oliver(Elaeagnus commutata), smooth sumac(Rhus glabra), and redbud(Cercis canadensis) had estimated survival rates >50%. Reclamation procedures used at Big Brown Mine (BBM) during 1981–1988 have not produced woodland habitats with vegetative characteristics comparable to premined woodlands and may not be providing the cover needed to encourage use by certain wildlife species. Procedures for improving woodland reclamation are recommended.  相似文献   

20.
Although humans are a major mechanism for short and long distance seed dispersal, there is limited research testing clothing as a vector. The effect of different types of material (sports vs hiking socks), or different items of clothing (boots, socks, laces vs legs) or the same item (socks) worn in different places on seed composition were assessed in Kosciuszko National Park, Australia. Data was analyzed using Repeated Measures ANOVA, independent and paired t-tests, Multi-dimensional Scaling Ordinations and Analysis of Similarity. A total of 24,776 seeds from 70 taxa were collected from the 207 pieces of clothing sampled, with seed identified from 31 native and 19 non-native species. Socks worn off-track collected more native seeds while those worn on roadsides collected more non-native seeds. Sports socks collected a greater diversity of seeds and more native seeds than hiking socks. Boots, uncovered socks and laces collect more seeds than covered socks and laces, resulting in 17% fewer seeds collected when wearing trousers. With seeds from over 179 species (134 recognized weeds) collected on clothing in this, and nine other studies, it is clear that clothing contributes to unintended human mediated seed dispersal, including for many invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号