首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
Satellite telemetry studies of the movements of seabirds are now common and have revealed impressive flight capabilities and extensive distributions among individuals and species at sea. Linking seabird movements with environmental conditions over vast expanses of the world’s open ocean, however, remains difficult. Seabirds of the order Procellariiformes (e.g., petrels, albatrosses, and shearwaters) depend largely on wind and wave energy for efficient flight. We present a new method for quantifying the movements of far-ranging seabirds in relation to ocean winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite. We apply vector correlation (as defined by Crosby et al. in J Atm Ocean Tech 10:355–367, 1993) to evaluate how the trajectories (ground speed and direction) for five procellariiform seabirds outfitted with satellite transmitters are related to ocean winds. Individual seabirds (Sooty Shearwater, Pink-footed Shearwater, Hawaiian Petrel, Grey-faced Petrel, and Black-footed Albatross) all traveled predominantly with oblique, isotropic crossing to quartering tail-winds (i.e., 105–165° in relation to birds’ trajectory). For all five seabirds, entire track line trajectories were significantly correlated with co-located winds. Greatest correlations along 8-day path segments were related to wind patterns during birds’ directed, long-range migration (Sooty Shearwater) as well as movements associated with mega-scale meteorological phenomena, including Pacific Basin anticyclones (Hawaiian Petrel, Grey-faced Petrel) and eastward-propagating north Pacific cyclones (Black-footed Albatross). Wind strength and direction are important factors related to the overall movements that delineate the distribution of petrels at sea. We suggest that vector correlation can be used to quantify movements for any marine vertebrate when tracking and environmental data (winds or currents) are of sufficient quality and sample size. Vector correlation coefficients can then be used to assess population—or species-specific variability and used to test specific hypotheses related to how animal movements are associated with fluid environments.  相似文献   

2.
The swimming behaviour of laboratory-reared newly hatched cod larvae (Gadus morhua L.) was observed in a control solution of artificial seawater and in seven solutions, each with a different concentration of arginine (109 to 10-3 M). The behaviour of 20 larvae was analysed in each of the eight solutions; the individual observation time was 1 min. Individual movements were recorded on video and analyzed using a computer-assisted program. The larvae swam in straight lines (a trajectory), rested, moved and started swimming again. For the parameters analyzed, i.e., number of movements, angle between successive trajectories and straightness index, there was no significant difference between the behaviour of the larvae in the different solutions. However, for the larvae in 10-5, 10-4 and 10-3 M arginine solutions, the analyzed parameters, i.e., time active, frequency of trajectories (number of movements exceeding body length), distance swum min-1, length of individual trajectories and trajectory velocity, were all significantly lower than for the larvae in the control solution of artificial seawater and for larvae in the solutions of 10-9, 10-8, 10-7 and 10-6 M arginine. The results show that the mean distance swum by cod larvae min-1 was two to five times longer in artificial seawater without arginine and in the four lower concentrations of arginine than in the three higher concentrations. Scanning micrographs show that newly hatched (pre-feeding) cod larvae possess olfactory organs. It seems reasonalbe to assume that the observed changes in swimming behaviour are mediated by the olfactory sense and are important in the feeding strategy of cod larvae. We suggest that the observed behaviour increases the probability of the larvae localizing patches of prey organisms and remaining in the patch once they have found it. The results show that chemokinesis is a mechanism by which the spatial distribution of fish larvae will be correlated with their prey.  相似文献   

3.
Recent advances in technologies have lead to a vast influx of data on movements, based on discrete recorded position of animals or fishing boats, opening new horizons for future analyses. However, most of the potential interest of tracking data depends on the ability to develop suitable modelling strategies to analyze trajectories from discrete recorded positions. A serious modelling challenge is to infer the evolution of the true position and the associated spatio-temporal distribution of behavioural states using discrete, error-prone and incomplete observations. In this paper, a Bayesian Hierarchical Model (HBM) using Hidden Markov Process (HMP) is proposed as a template for analyzing fishing boats trajectories based on data available from satellite-based vessel monitoring systems (VMS). The analysis seeks to enhance the definition of the fishing pressure exerted on fish stocks, by discriminating between the different behavioural states of a fishing trip, and also by quantifying the relative importance of each of these states during a fishing trip. The HBM approach is tested to analyse the behaviour of pelagic trawlers in the Bay of Biscay. A hidden Markov chain with a regular discrete time step is used to model transitions between successive behavioural states (e.g., fishing, steaming, stopping (at Port or at sea)) of each vessel. The parameters of the movement process (speed and turning angles) are defined conditionally upon the behavioural states. Bayesian methods are used to integrate the available data (typically VMS position recorded at discrete time) and to draw inferences on any unknown parameters of the model. The model is first tested on simulated data with different parameters structures. Results provide insights on the potential of HBM with HMP to analyze VMS data. They show that if VMS positions are recorded synchronously with the instants at which the process switch from one behavioural state to another, the estimation method provides unbiased and precise inferences on behavioural states and on associated movement parameters. However, if the observations are not gathered with a sufficiently high frequency, the performance of the estimation method could be drastically impacted when the discrete observations are not synchronous with the switching instants. The model is then applied to real pathways to estimate variables of interest such as the number of operations per trip, time and distance spent fishing or travelling.  相似文献   

4.
Long-distance migration is a major part of the life cycle of many seabirds. The main processes driving local movements within those long-distance migratory movements are essentially unknown. Here, we studied detailed patterns of the movements with respect to distance from land of the most abundant seabird species migrating across the northernmost part of the Strait of Gibraltar and analysed how ocean surface winds influence those patterns. We did this by using visual and S-band radar surveys. Our results show that seabirds followed lines of travel that were located nearer the coast than randomly expected. Re-sampling techniques and comparison with additional data from ship-based counts corroborated this pattern, which was not substantially affected by the decrease in detection at distances of up to 3,000 m. Wind direction and speed covaried with local patterns of flight trajectories in a general manner. All the seabirds responded to headwinds by approaching the coast in proportion to the magnitude of wind intensity. Such a change in flight patterns could be a strategy to reduce the effect of headwinds, by approaching the coast where wind intensity was reduced by orographic factors. Under tailwind conditions, seabirds tended to fly further from the coast, profiting from increasing winds further from shore. Our results imply that modification of off-shore distance in relation to conditions of ocean surface winds may be an energetically advantageous strategy for migrating seabirds. Off-shore distances were also dependent on global and local migratory behaviour of different species, but not on flight type.  相似文献   

5.
In the habitat of desert ants, Cataglyphis fortis, a constant wind is usually blowing during the daytime. When visiting a familiar food source, the ants steer some distance downwind of the feeder, rather than attempting a direct approach that might miss small food sources, in particular. In the downwind area, the ants pick up the odor plume emanating from the food and follow it upwind to the prey. This strategy saves considerable walking distance and time. The additional path necessitated by the downwind strategy is only about 0.75 to 2 m, depending on nest–feeder distance, while missing the food on the upwind side results in much longer search trajectories. During the initial three to five visits to a feeding site, downwind distance and length of the approach path are shortened notably, and the approach trajectory is straightened. Desert ants further exhibit considerable short-term flexibility in their approach. Experienced individuals are evidently able to decide upon leaving the nest which direction to choose toward the feeder, depending on current wind direction (that fluctuates slightly during the day). Notable changes in wind direction occur primarily overnight. For larger nest–feeder distances, the animals adjust their approach en route to the altered wind direction during their first foraging trip in the morning.  相似文献   

6.
A central goal of behavioral ecology is to quantify and explain variation in behavior. While much previous work has focused on the differences in mean behavior across groups or treatments, we present a complementary approach studying changes in the distribution of the response variable. This is important because changes in the edges of a distribution may be more informative than changes in the mean if behavior at the edges of a distribution better reflects behavioral constraints. Quantile regression estimates the rate of change of conditional quantiles of a response variable and thus allows the study of changes in any part of its distribution. Although quantile regression is gaining popularity in the ecological literature, it is strikingly unused in behavioral ecology. Here, we demonstrate the usefulness of this method by analyzing the relationship between the starting distance (SD) at which an observer approach a focal animal and its flight initiation distance (FID, the distance between the observer and the animal when it decides to flee). In particular, we used a simple model of flight initiation distance to show that in most situations ordinary least-square regression cannot be used to analyse the SD–FID relationship. Quantile regression conducted on the lowest quantiles appears more robust and we applied this approach to data from four bird species. Overall, changes in the lowest FID values appeared to be the most informative to determine if a species displays a “flush early” strategy, a strategy which has been hypothesized to be a general rule. We hope this example will bring quantile regression to the attention of behavioral ecologists as a valuable tool to add to their statistical toolbox.  相似文献   

7.
B. J. Hill 《Marine Biology》1978,47(2):135-141
Ultrasonic transmitters were used to track the movements of the crab Scylla serrata (Forskal) over 24 h periods in the Kowie estuary, South Africa. Laboratory experiments using infra-red time-lapse photography to record activity indicated that the transmitters did not affect duration of emergence, amount of movement or feeding. In the estuary, S. serrata was active on average for 13 h. out of 24 h, most activity was at night. The distance moved per night by continuously tracked crabs averaged 461 m, but ranged between 219 and 910 m. Most movement was slow, modal speed was 10 to 19 m h-1. Slow movements were independent of direction of current and are assumed to be related to use of contact chemoreception for location of prey. About one-seventh of movements were faster than 70 m h-1; these were most frequently against the current and may be related to olfactory location of food. The crabs did not occupy a distinct territory, but tended to remain in the same general area although they were capable of moving at least 800 m along the length of the estuary at night.  相似文献   

8.
The importance of water movement as an ecological factor in littoral areas and open oceans is frequently badly underestimated. Water movement may exert biological effects comparable to those of light and temperature. Without water movement, all marine life would cease to exist. In this papar water movement is taken to embrace all motions which may occur in oceanic and coastal waters, e.g. currents, tides, horizontal and vertical water exchanges. The primary driving forces creating oceanic water movements are: gravity, earth rotation, atmospheric dynamics, and sun radiation. Until recently, water movements have largely, or exclusively, been studied by physical oceanographers; biological aspects of water movements have only lately begun to attract the attention of biologists. The results obtained so far make it quite clear that approaches and terminology employed by physical oceanographers require modification in order to meet the needs of marine biologists. The biological consequences of water movements are particularly complex, since moving water serves as transportation medium for other environmental factors such as temperature, salinity, food, etc. At the same time, some of these factors affect, in turn, speed and direction of the moving water. In addition, speed and intensity of water movements may be differentiated due to the variety of sources which cause or modify them. Various examples are presented to illustrate the complexity of water movement and its effects on biological systems. The intensity values of water movement may vary over an extremely wide range (13 degrees of magnitude).  相似文献   

9.
Analyzing animal movements using Brownian bridges   总被引:7,自引:0,他引:7  
Horne JS  Garton EO  Krone SM  Lewis JS 《Ecology》2007,88(9):2354-2363
By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.  相似文献   

10.
We introduce a new index for measuring perpendicularity of animal movements with respect to a boundary (e.g., a habitat patch edge), and provide a computer algorithm for its calculation. Our index, η, improves on an approach that measures perpendicularity with respect to a fixed boundary direction. This is because η accounts for moment-to-moment trajectories relative to nearest-neighbor boundary attributes at the scale of an animal's movement. Our algorithm prp calculates η efficiently and accurately with both synthetic data and large telemetry datasets. In addition, we have included routines in prp which account for scenarios inherently problematic to perpendicularity estimators.  相似文献   

11.
Dowd M  Joy R 《Ecology》2011,92(3):568-575
Data on fine-scale animal movement are being collected worldwide, with the number of species being tagged and the resolution of data rapidly increasing. In this study, a general methodology is proposed to understand the patterns in these high-resolution movement time series that relate to marine animal behavior. The approach is illustrated with dive data from a northern fur seal (Callorhinus ursinus) tagged on the Pribilof Islands, Alaska, USA. We apply a state-space model composed of a movement model and corresponding high-resolution vertical movement data. The central goal is to estimate parameters of this movement model, particularly their variation on appropriate time scales, thereby providing a direct link to behavior. A particle filter with state augmentation is used to jointly estimate the movement parameters and the state. A multiple iterated filter using overlapping data segments is implemented to match the parameter time scale with the behavioral inference. The time variation in the auto-covariance function facilitates identification of a movement model, allows separation of observation and process noise, and provides for validation of results. The analysis yields fitted parameters that show distinct time-evolving changes in fur seal behavior over time, matching well what is observed in the original data set.  相似文献   

12.
Conradt L  Roper TJ 《Ecology》2006,87(1):125-132
We observed meadow brown (Maniola jurtina) and gatekeeper (Pyronia tithonus) butterflies at habitat boundaries and observed spontaneous movements out of suitable habitat in order to investigate such movements in relation to dispersal. We found that butterflies of both species were aware of the position of a highly permeable habitat boundary without needing to cross it. Nevertheless, a considerable proportion of butterflies close to the boundary left their habitat (25-43%). Butterflies that crossed the boundary, and moved substantial distances into unsuitable habitat (up to 350 m in M. jurtina and 70 m in P. tithonus), usually returned to their original habitat patch (98-100%). Movement trajectories, at least in M. jurtina, were significantly different from, and more directed and systematic than, a correlated random walk. Approximately 70-80% of spontaneous movements into unsuitable habitat in both species were "foray" loops comparable to those described in mammals and birds. We conclude that, since migrants seemed to have considerable control over leaving their patch and over their subsequent movement trajectories, chance encounter rates with habitat boundaries, and indeed habitat leaving rates, might be less crucial in determining dispersal rates than is usually assumed. In addition, random dispersal trajectories should not be taken for granted in population or evolution models.  相似文献   

13.
以斑马鱼为受试生物,通过水质毒性生物监测仪记录行为轨迹,研究了亚致死浓度的马拉硫磷急性暴露下斑马鱼游动行为和群体分布等多项行为参数的变化。结果表明:斑马鱼对环境变化响应快速,游动速度短时间内急剧增大,之后下降再调整稳定至一定范围,变化趋势符合环境压力模型。游泳高度不断增大,暴露1 h后斑马鱼几乎全部集中到水箱上部,与暴露前水平差异显著。通讯行为参数平均距离和分散度在暴露后短时间内减小之后恢复到暴露前水平。通过解析斑马鱼的行为变化可以实现水体有机磷农药突发污染的早期预警。  相似文献   

14.
The routes of five satellite-tracked loggerhead turtles (Caretta caretta), subjected to an experimental translocation away from their usual migratory routes, have been analysed in relation to the concurrent oceanographic conditions. Remote sensing data on sea surface temperature and height anomalies, as well as trajectories of surface drifters were used, to get simultaneous information on the currents encountered by the turtles during their long-range oceanic movements. Turtles mostly turned out to move in the same direction as the main currents, and their routes were often influenced by circulation features they encountered. A comparison between turtle ground speeds with that of drifters shows that in several instances, the turtles did not drift passively with the currents but contributed actively to the overall movement. Two turtles embarked on an oceanic crossing, probably induced by seasonal changes in surface temperatures, a crossing that was largely determined by the main currents existing in the area.  相似文献   

15.
Movements of deer can affect population dynamics, spatial redistribution, and transmission and spread of diseases. Our goal was to model the movement of deer in Nebraska in an attempt to predict the potential for spread of chronic wasting disease (CWD) into eastern Nebraska. We collared and radio-tracked >600 white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) in Nebraska during 1990–2006. We observed large displacements (>10 km) for both species and sexes of deer, including migrations up to 100 km and dispersals up to 50 km. Average distance traveled between successive daily locations was 166 m for male and 173 for female deer in eastern Nebraska, and 427 m for male and 459 for female deer in western Nebraska. Average daily displacement from initial capture point was 10 m for male and 14 m for female deer in eastern Nebraska, and 27 m for male and 28 m for female deer in western Nebraska. We used these data on naturally occurring movements to create and test 6 individual-based models of movement for white-tailed deer and mule deer in Nebraska, including models that incorporated sampling from empirical distributions of movement lengths and turn angles (DIST), correlated random walks (CRW), home point fidelity (FOCUS), shifting home point (SHIFT), probabilistic movement acceptance (MOVE), and probabilistic movement with emigration (MOVEwEMI). We created models in sequence in an attempt to account for the shortcomings of the previous model(s). We used the Kolmogrov–Smirnov goodness-of-fit test to verify improvement of simulated annual displacement distributions to empirical displacement distributions. The best-fit model (D = 0.07 and 0.08 for eastern and western Nebraska, respectively) included a probabilistic movement chance with emigration (MOVEwEMI) and resulted in an optimal daily movement length of 350 m (maximum daily movement length of 2800 m for emigrators) for eastern Nebraska and 370 m (maximum of 2960 m) for western Nebraska. The proportion of deer that moved as emigrators was 0.10 and 0.13 for eastern and western Nebraska, respectively. We propose that the observed spread of CWD may be driven by large movements of a small proportion of deer that help to establish a low prevalence of the disease in areas east of the current endemic area. Our movement models will be used in a larger individual-based simulation of movement, survival, and transmission of CWD to help determine future surveillance and management actions.  相似文献   

16.
Knowing how far away animals can detect food has important consequences for understanding their foraging and social behaviors. As part of a broader set of field experiments on primate foraging behavior, we set out artificial feeding platforms (90 × 90 cm or 50 × 50 cm) throughout the home range of one group of 22 brown capuchin monkeys, at sites where they had not seen such platforms previously. Whenever the group approached such a new platform to within 100 m, we recorded the group's direction and speed of approach, and the identity and distance from the platform of the group member that detected the platform or came closest to it without detecting it. We used logistic regression on these data to examine the effects of group movement speed, platform size and height, and focal individual age and sex on the probability of detecting the platform as a function of distance. Likelihood of detecting a platform decreased significantly at greater distances – the probability of detecting a platform reached 0.5 at 41 m from the group's center and 25.5 m from the nearest group member. These results show that detectability of platforms by the entire group (9 adults, 13 juveniles) was less than twice that for single group members. Detectability at a given distance decreased severely as the group moved faster; at their fastest speed, individuals had to approach a platform to within less than 10 m to find it. The large platforms were significantly more likely to be detected than the small ones, suggesting that increased use of larger food patches by wild primates may not necessarily reflect foraging preferences. Received: 20 May 1996 / Accepted after revision: 5 April 1997  相似文献   

17.
Displaced honey bees perform optimal scale-free search flights   总被引:3,自引:0,他引:3  
Honey bees (Apis mellifera) are regularly faced with the task of navigating back to their hives from remote food sources. They have evolved several methods to do this, including compass-directed "vector" flights and the use of landmarks. If these hive-centered mechanisms are disrupted, bees revert to searching for the hive, but the nature and efficiency of their searching strategy have hitherto been unknown. We used harmonic radar to record the flight paths of honey bees that were searching for their hives. Our subsequent analysis of these paths revealed that they can be represented by a series of straight line segments that have a scale-free, Lévy distribution with an inverse-square-law tail. We show that these results, combined with the "no preferred direction" characteristic of the segments, demonstrate that the bees were flying an optimal search pattern. Lévy movements have already been identified in a number of other animals. Our results are the best reported example where the movements are mostly attributable to the adoption of an optimal, scale-free searching strategy.  相似文献   

18.
Synchronization of activity is one of the major challenges of any society, and to what extent social animals reach a consensus still remains to be established. In the case of group movements, recent studies have underlined the importance of the pre-departure period and suggested that some individuals in a group express their motivation to move by showing a preference for a specific direction. However, how do other group members really choose the time and direction of movement? This study shows that in two semi-free ranging Tonkean macaque (Macaca tonkeana) groups, several individuals propose different directions for movement by displaying unique behavior. The whole group eventually moves in the choice of direction supported by the majority of individuals according to a sequence of three quorum rules. Moreover, when the number of individuals choosing another direction is higher than their own group, individuals that proposed alternative directions eventually renounce and follow the majority. Despite conflict of interests, group members reach a consensus before the actual start of group movement. This demonstrates that processes of this type, which can be considered to be voting processes, are not exclusive to human societies and may be explained by a complex sequence of simple rules.  相似文献   

19.
Connectivity Planning to Address Climate Change   总被引:1,自引:0,他引:1  
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse‐filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present‐day spatial gradients of temperature. We modified a cost–distance algorithm to model these corridors and tested the model with data on current land‐use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land‐use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático  相似文献   

20.
Two computational methods were applied to classification of movement patterns of zebrafish (Danio rerio) to elucidate Markov processes in behavioral changes before and after treatment of formaldehyde (0.1 mg/L) in semi-natural conditions. The complex data of the movement tracks were initially classified by the Self-organizing map (SOM) to present different behavioral states of test individuals. Transition probabilities between behavioral states were further evaluated to fit Markov processes by using the hidden Markov model (HMM). Emission transition probability was also obtained from the observed variables (i.e., speed) for training with the HMM. Experimental transition and emission probability matrices were successfully estimated with the HMM for recognizing sequences of behavioral states with accuracy rates in acceptable ranges at central and boundary zones before (77.3-81.2%) and after (70.1-76.5%) treatment. A heuristic algorithm and a Markov model were efficiently combined to analyze movement patterns and could be a means of in situ behavioral monitoring tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号