首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In an effort to remove BDE-47 residues from the environment, a bacterial strain that is capable of utilizing BDE-47 as the sole carbon source was isolated and screened from soil collected from an e-waste recycling area in Tianjin to analyze the degradation properties. The strain was preliminarily identified as Enterobacter sp. according to a 16S rDNA gene sequence analysis. The strain degraded 35.8% of 525 μg/L of BDE-47 in 35 d when the initial concentration of bacteria was 7.1 × 105 cells/ mL. The product of the biodegradation of BDE-47 was BDE-28. The biodegradation of BDE-47 fit well with first-order kinetics, and its degradation kinetics was ln Ct = - 0.104t + 6.22. With the addition of an electron acceptor, such as Fe3+, SO4 2- and NO3 -, the BDE-47 degradation rate was significantly increased to 49.8%, 59.1%, and 67.3%, respectively. The above results revealed that the strain could degrade BDE-47, which is of importance in the application of environmental bioremediation of BDE-47. © 2018 Science Press. All rights reserved.  相似文献   

2.
Tetracycline is widely used in livestock and poultry breeding industry, which can cause serious problems to the environment. Antibiotic pollution has become an important environmental issue. This study aimed to isolate and identify a well-functioning tetracycline-degrading bacteria strain from activated sludge and to investigate its optimum degradation conditions. The strain was identified through morphological features, Gram staining, and the sequence analysis of 16S rRNA. Furthermore, the temperature, initial pH of the medium, inoculation amount, and type of metallic salt were analyzed to investigate the tetracycline degradation performance of the isolated strain. Based on the single factor test, the method of response surface analysis was adopted to optimize the degradation condition. The strain was named TTC-1 and identified as Klebsiella pneumoniae. The optimum condition for tetracycline degradation was determined as follows: temperature of 34.4 °C, pH of 7.22, and MnSO4 concentration of 0.32 g/L. Under this optimum condition, the predicted tetracycline degradation rate was 93.77%, whereas the observed value was 94.26%. The experimental results showed that the proposed model had high accuracy. TTC-1 showed a good performance in degrading tetracycline, which can provide reference for the bacteria during the biological treatment of tetracycline containing wastewater. © 2018 Science Press. All rights reserved.  相似文献   

3.
Micro-organism with efficient desulfurization performance is a key factor in the biological desulfurization technology. This study aimed to seek such a sulfur-oxidizing strain and understand its desulfurization mechanism. Wastewater in a sewage station of natural gas purification plant was used to screen the sulfide-oxidizing strain, and to identify it based on sequence similarity analysis of 16S rDNA and the morphological characteristics. Thiosulfate was used as substrate for investigating the sulfur oxidation performance and salinity tolerance; the OD600, content change of thiosulfate, sulfate, sulfur, pH and total alkalinity in the cultural system were also investigated. The strain DS-B was found to share the highest sequence similarity with Thioalkalivibrio thiocyanoxidans ARh2, therefore determined as Thioalkalivibrio. At the optimum temperature of 35 °C for growth and degradation, the removal efficiency of thiosulfate could reach 98.7% after 7 days. Strain DS-B had strong resistance to thiosulfate, and the optimal concentration of S2O32- was 2 × 104 mg/L. The analysis for sulfur oxides showed that it could oxidize thiosulfate by the pathway of S2O32-→SO42- / S2O32- → S → SO42-. Therefore the strain DS-B is a sulfur-oxidizing bacterium with great application prospect for its strong salt tolerance and conspicuous removal capability for thiosulfate.  相似文献   

4.
This paper aimed to find an efficient bacterium for decolorizing azo dyes. A strain which could decolorize Congo Red efficiently was isolated from Congo Red. The strain was identified as Paenibacillus dendritiformis GGJ7 (GGJ7, in short) by 16S rRNA gene sequence (NCBI accession No. KY655213). Strain GGJ7 was applied to the decolorization of azo dyes in this research, and influencing factors of decolorization were investigated, including diverse nutritional conditions, culture conditions (pH, temperature, oxygen conditions), and various dyes. The results demonstrated that the decolorization rate of Congo Red by strain GGJ7 was much higher than that of the other eight strains (e.g., YRJ1, YRJ2 etc.) in our previous work. The optimal conditions for Congo Red decolorization were 25 g/L LB broth as nutrient source, 30 °C, pH 7, and an anaerobic environment. The mechanism of decolorization was mainly biodegradation, and the decolorization process of strain GGJ7 was conformed to the first-class kinetics model: -ln (At /A0) = 0.6058t - 0.1082. For different azo dyes, the decolorization rate was up to 95%. Strain GGJ7 only needed 1 h to decolorize 50 mg/L Methyl Orange, 25 mg/L Croceine Scarlet, and 25 mg/L Methyl Red, needed 3 h to decolorize 50 mg/L Orange G and 50 mg/L Orange G6, and needed 4 h to decolorize 50 mg/L Congo Red. In summary, strain GGJ7 is an efficient azo dye-decolorizing bacterium, and it has a potential application in treating printing and dyeing wastewater. © 2018 Science Press. All rights reserved.  相似文献   

5.
The white rot fungi are members of Basidiomycota, which can degrade lignin and form white rot. They are high producers of extracellular laccases. In the present study, pure culture strain of high-temperature and high-laccase production types (numbered as BUA-01) was isolated from the fruiting bodies of a white rot fungus collected in the campus of Beijing University of Agriculture. The taxonomic characteristic was determined based on morphological and ITS sequence analysis. Furthermore, the optimal culture conditions for the mycelia were determined, including carbon source, nitrogen source, C/N ratio, growth factors, temperature, and pH. Extracellular laccase production was investigated in liquid fermentation with different concentrations of Cu (CuSO4) as inducer. Decolorizing activity of the fermentation broth was assayed using three azo dyes: Evans blue, methyl orange, and eriochrome black T. The results showed that the strain possessed the highest homology toward Trametes hirsuta, with the homology ratio of 100% and the genetic distance of 0, suggesting that the strain BUA-01 belonged to the genus Trametes. The culture condition investigated revealed that the optimal condition for mycelia growth included the following: carbon source, starch; nitrogen source, soybean powder and yeast extract; C/N ratio, 40/1 and 10/1; temperature, 37 °C; and pH, 6.0-7.0. The assayed growth factors had no significant effect on mycelial growth. It demonstrated high laccase activity in liquid fermentation. The highest extracellular laccase activity of 1 081.33 ± 6.3 U/mL was observed in the broth with a Cu adjunction concentration of 0.25 mmol/L after a 96-h culture period. It was about 26-fold higher than that of the control group. The isolated strain exhibited significant decolorizing activity toward the azo dyes Evans blue, methyl orange, and eriochrome black T, with the decolorization rate at 12 h of 93.31% ± 0.16%, 92.37% ± 0.42%, 79.25% ± 0.64%, respectively. This suggests that the strain possesses potential applications in laccase production and dye degradation. © 2018 Science Press. All rights reserved.  相似文献   

6.
In this study, a pure culture strain (numbered as F1501) was obtained using tissue separation and purification methods from the sclerotia of Chaga mushroom from Russia. Further researches included studies on classification, optimum growth conditions of mycelia, extracellular polysaccharides from fermentation broth and their antioxidant activity, and artificial acclimation. According to the identification of the internal transcribed spacer (ITS) region, it was confirmed that F1501 was a species of the genus Inonotus and family Hymenochaetaceae, which had 99% similarity with Inonotus obliquus. F1501 was further classified as I. obliquus based on the morphological characteristics of its mycelia and sclerotia. The optimal carbon source, nitrogen source, C/N ratio, growth factor, temperature, and pH value for the growth of the F1501 strain mycelia were maltose, beef extracts, 10/1, B2, 28 °C, and 8.0, respectively. Liquid fermentation of F1501 was performed using PD media and a 10% inoculation amount at 28 °C and 150 r/min for 7 d. The content of polysaccharides in the fermentation broth was 476.32 mg/L, with a total antioxidant activity of 0.19 mmol/L (Trolox) and hydroxyl free radical-scavenging activity of 72.7%. Artificial acclimation study revealed that the fruiting body-like structure was obtained using cottonseed hulls as the main substrate. In the present study, a new strain of I. obliquus and its biological characteristics were explored, which could provide a theoretical basis for the artificial acclimation and development of wild mushrooms. © 2018 Science Press. All rights reserved.  相似文献   

7.
In the present study, fruiting bodies of a wild medicinal mushroom, 'Huaier, ' were collected from Populus canadensis in the Beijing Xiangshan Park. The pure culture strain was obtained from fruiting bodies using the tissue isolation method. It was stored and numbered as XS-01. It was systematically classified using morphological and ITS identification. Further studies were focused on mycelia optimum culture conditions and laccase production by liquid fermentation. A 598-bp partial ITS region sequence (GenBank accession number KY93348) was obtained using PCR method. Phylogenetic tree and genetic distance analysis were performed using the MEGA 6.0 software. The present strain possessed the highest homology (100%) with Perenniporia robiniophila, and the genetic distances were 0.000. Based on the ITS sequencing and morphological characteristics of fruiting bodies and mycelia, XS-01 was identified as P. robiniophila. Based on mycelial growth rate and quality, mycelia optimum culture conditions were revealed to be as follows: the optimum carbon sources were starch and maltose, the optimum nitrogen source was yeast extracts, the optimum C/N ratio range was 30/1 - 60/1, the best growth temperature was 32 °C, the optimum pH was 7, and the optimum growth factor was VB1. Further study of Cu2+ on extracellular laccase production revealed that 1.0 mmol/L Cu2+ could significantly enhance the enzyme production, with the highest activity of 417.5 U/mL when cultured for 96 h and an increase ratio of 93.4% to the control. On the other hand, 2.0 mmol/L Cu2+ can markedly decrease the enzyme production laccase activity at 96 h to 79.0 U/mL, which was 36.6% of that of the control. In conclusion, a pure strain of T. robiniophila with high extracellular laccase activity was obtained, suggesting its potential application for artificial cultivation and laccase production. © 2018 Science Press. All rights reserved.  相似文献   

8.
Oil pollution is one of the major factors causing environmental deterioration. Bioremediation of oil contaminated environments by microorganisms attracts much research attention. This study aimed to screen efficient oil-degrading bacteria from oil contaminated soil and analyze their characteristics and catabolic genes. Oil-degrading bacteria were screened from oil contaminated soil in minimal medium containing crude oil and identified by morphological, physiological and biochemical characteristics and 16S rDNA sequence analysis. Their growth and degradation characteristics were studied with ultraviolet spectroscopy and GC-MS analysis. The surfactant production was studied by adopting culture method. The major oil-degrading related genes were detected by t he PCR a mplification. As a result, t hree oil-degrading bacteria strains named KB1, 2182 and JC3-47 were isolated from the oil contaminated soil samples. The strains could use crude oil as the sole carbon source to degrade oil with a degrading rate of 41.02%, 32.26% and 55.90%, respectively, when cultured in minimal medium containing crude oil for 3 days. The bacteria were identified to belong to genus Rhodococcus. With 100% similarity of 16S rDNA sequences of the three strains with known ones of Rhodococcus, KB1 was preliminarily identified as Rhodococcus erythropolis, 2182 as Rhodococcus equi, and JC3-47 as Rhodococcus qingshengii. They grew well at 10-50 °C, with the initial pH of 3-9 and the NaCl concentration of 0-5%. The optimal temperature for bacterial growth was 35 °C, 35 °C and 30 °C respectively. KB1 and 2182 could grow at pH 2 and 9.0% of NaCl. The bacteria grew well in broth containing different organic substrates as sole carbon source, such as n-dodecane, n-octadecane, benzene, methylbenzene, xylene and naphthaline. KB1 and JC3-47 could grow well in broth containing pyrene. GC-MS analysis revealed that the bacteria could effectively degrade medium- and long-chain alkane components in crude oil. The bacteria produced biosurfactants and decreased the surface tension of the culture broth. They also showed adhesion activities to n-hexadecane. The oil-degrading related genes such as alkane monooxygenase, aromatic-ring-hydroxylating dioxygenase and catechol dioxygenase genes were detected in all the three strains. Besides, biphenyl dioxygenase genes were detected in KB1 and 2182. The isolated Rhodococcus spp. strains could effectively degrade petroleum hydrocarbons with high adaptabilities to extreme environments such as high salt and low temperature. They are supposed to be applied broadly in the bioremediation of oil contaminated soil in such environments.  相似文献   

9.
Due to the high nutritive value of oligopeptides and the waste of feather resources, this study aimed at screening efficient strains of bacteria able to rapidly degrade feathers and produce large quantities of value-added oligopeptides. In order to assess the potential yield of oligopeptides, the promising strain H0 was selected from 16 feather-degrading microorganisms. To identify the strain, we analyzed the morphological and physiological characteristics of different strains, and carried out a gene sequence analysis of their 16S rRNAs. A single factor experiment was used to promote feather degradation and oligopeptide production, and the characteristics of the oligopeptides produced were also analyzed by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The strain was identified as Bacillus methylotrophicus. The optimal initial pH and temperature for oligopeptide production were 11 and 40 °C, respectively. After 72 h of fermentation under these optimal conditions, the feathers were almost completely degraded, with a 38.19% of oligopeptides (accounting for 67.53% of the total soluble peptides) and a 11.11% of free amino acids produced. LC-MS/MS analysis indicated that the oligopeptides were mainly short peptides containing 5-10 amino acids, with a molecular mass (Mr) of less than 1 300. Moreover, the peptides were abundant in branched-chain amino acids, that might be responsible for the antioxidant property of the feather hydrolysate. Our results demonstrate the great capability of B. methylotrophicus H0 in feather degradation and oligopeptide production. This research provides a high-quality microorganism resource, and the scientific basis for the development of feather-derived oligopeptide products. © 2018 Science Press. All rights reserved.  相似文献   

10.
This study evaluated the effectiveness of different amendments--including a commercial NPK fertilizer, a humic substance (HS), an organic industrial waste (NovoGro), and a yeast-bacteria consortium--in the remediation of highly contaminated (up to 6% of total petroleum hydrocarbons) oilfield soils. The concentrations of hydrocarbon, soil toxicity, physicochemical properties of the soil, microbial population numbers, enzyme activities and microbial community structures were examined during the 90-d incubation. The results showed that the greatest degradation of total petroleum hydro- carbons (TPH) was observed with the biostimulation using mixture of NPK, HS and NovoGro, a treatment scheme that enhanced both dehydrogenase and lipase activities in soil. Introduction of exogenous hydrocarbon-degrading bacteria (in addition to biostimulation with NPK, HS and NovoGro) had negligible effect on the removal of TPH, which was likely due to the competition between exogenous and autochthonous microorganisms. None- theless, the addition of exogenous yeast-bacteria consor- tium significantly enhanced the removal of the aromatic fraction of the petroleum hydrocarbons, thus detoxifying the soil. The effect of bioaugmentation on the removal of more recalcitrant petroleum hydrocarbon fraction was likely due to the synergistic effect of bacteria and fungi.  相似文献   

11.
This work investigated the degradation of humic acid (HA) in aqueous solution by electrochemical oxidation with Antimony- and Nickel-doped Tin oxide electrode (Ni-Sb-SnO2/Ti electrode) as the anode. Initial concentrations of HA ranged from 3 to 9 mg-L 1. Under such a concentration scope, the degradation of HA was a mass transfer controlled process. Degradation rate increased with the increase of HA initial concentration. Test on the effect of tert-butanol revealed that · OH played an important role in the oxidation of HA. The absence of cation Ca2+ was beneficial to HA degradation, which suggested that both indirect and direct electrolyze happened during the whole electrochemical oxidation process. Alkaly (pH = 12) and neutral (pH = 7) conditions were benefical to HA degradation.  相似文献   

12.
Separator between anode and cathode is an essential part of the microbial fuel cell (MFC) and its property could significantly influence the system perfor- mance. In this study we used polyvinyl alcohol (PVA) polymer membrane crosslinked with sulfosuccinic acid (SSA) as a new separator for the MFC. The highest power density of 7594-4 mW-m-2 was obtained when MFC using the PVA membrane crosslinked with 15% of SSA due to its desirable proton conductivity (5.16 x 10-2 S.cml). The power density significantly increased to 11064- 30 mW.m-2 with a separator-electrode-assembly config- uration, which was comparable with glass fiber (11704- 46 mW.m-2). The coulombic efficiencies of the MFCs with crosslinked PVA membranes ranged from 36.3% to 45.7% at a fix external resistance of lO00f2. The crosslinked PVA membrane could be a promising alter- native to separator materials for constructing practical MFC system.  相似文献   

13.
A novel method for the synthesis of zeolite was developed in this paper. The synthesis was carried out by hydrothermal activation after alkali fusion and coal fly ash (CFA) was used as raw material with seawater of different salinities. Seawater salinity was varied from 32 to 88 for zeolite crystallization during the hydrothermal process. The results show that seawater salinity plays an important role in zeolite synthesis with CFA during hydrothermal treatment. The products were a mixture of NaX zeolite and hydroxysodalite; seawater salinity more strongly affected the crystallization than the type and chemical composition of the zeolites. The yield of CFA transformed into zeolite gradually rose with the increase in salinity, reaching a transformation rate of 48%--62% as the salinity increased from 32 to 88, respectively. The proposed method allows for the efficient disposal of by-products; therefore, the application of seawater in zeolite synthesis presents promising economic and ecological benefits.  相似文献   

14.
The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box- Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3℃, contact time of 63.8 min, and an adsorbent dosage 3.90 g· L-1. Under the optimized condi- tions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.  相似文献   

15.
杨树抗旱性研究进展   总被引:16,自引:1,他引:16  
The drought resistance of woody plants, in particular, Populus, was reviewed in this paper. Studies about drought resistance of Populus mostly focused on changes in growth properties, physiological adaptation and biochemical aspects, but a few on molecular biology. The indexes of drought adaptation and productivity were analyzed and these indexes could be employed to identify drought resistance of woody plants. Combination of such different approaches will, hopefully, give us a more complete understanding of the various regulatory mechanisms in trees than what we may have today. With development of the molecular biology of woody plants, the sluties on stress resistance of Populus which was regarded as a model plant, are summarised. Ref 96  相似文献   

16.
A potentiometric cobalt-based screen-pritning sensor was fabricated by electroplating cobalt on the surface of a screen-printing electrode as the sensitive layer for the determination of dihydrogenphosphate (H2PO4) in wastewater samples. The electrochemical performance of this sensor was fully examined to determine its detection calibration, detection limit, response time, selectivity, and interference with pH, various ions, and dissolved oxygen (DO). The cobalt-based phosphate sensor showed a phosphate-selective potential response in the range of 10 5mol·L^-1 to 10^-1 mol^-1, yielding a detection limit of 3.16 × 10μmol·L^l and a slope of -37.51 mV·decade' in an acidic solution (pH 4.0) of H2PO4-. DO and pH were found to interfere with sensor responses to phosphate. Ultimately, the performance of the sensor was validated for detecting wastewater samples from the Xiaojiahe Waste- water Treatment Plant against the standard speetrophotometric methods for HzPO4 analysis. The discrepancy between the two methods was generally +5% (relative standard deviation). Aside from its high selectivity, sensitivity, and stability, which are comparable with conventional bulk Co-wire sensors, the proposed phosphate sensor presents many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices, such as flow injectors.  相似文献   

17.
Summary. When attacked or otherwise disturbed, larvae of the aquatic firefly Luciola leii display fork-shaped glands laterally from the meso- and metathorax as well as each abdominal segment. Glandular eversion is accompanied by a strong pine oil-like odour, thanatosis and glowing from paired larval light organs. Observations by SEM and TEM revealed that there are numerous, almost spherical protuberances, measuring 9 μm in diameter on the surface of each gland. Each protuberance is connected to a well developed secretory cell via a 0.1 μm thick and 0.2 μm long stalk and bears three to six 7 μm long spines on its apex. The convoluted glandular walls measure 0.2 μm. The cytoplasm of the secretory cells is characterized by the presence of numerous mitochondria and an extensive system of cisternae and tubular endoplasmic reticulum. Preliminary GC-MS analysis of the glandular secretion revealed two volatile terpenoids: terpinolene and γ-terpinene. Choice and no-choice bioassays involving fish and ants as well as other predators demonstrate that the secretions serve as an effective deterrent against a range of ecologically relevant enemies. The larval postural adjustments, light emission, everted glands, and glandular release of distasteful or repellent compounds, appear to function as a multi-modal, aposematic larval defence. The tandem evolution of glandular secretions and conspicuousness in larval fireflies could partially explain their successful radiation into both aquatic and terrestrial habitats.  相似文献   

18.
The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol. m-3 and different electrolyte species, such as type 1-1, type 2-1 and type 3-1. The Donnan steric pore model-dielectric exclusion (DSPM- DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9mol·m^-3). The results indicated that the dissociation of the hydro- philic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1-1 and type 2-1 electrolytes at dilute aqueous solutions (0.1-0.5 mol · m^3). However, for type 3-1 electrolyte, specific adsorp- tion should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.  相似文献   

19.
The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.  相似文献   

20.
The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20℃, 30℃, 40℃, 50℃, and 60℃ for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio ofpersulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as CI-, HCO3, SO2 , and NO3. Importantly, a scavenging effect in rate constant was observed for both C1 and CO2- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号