首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An infra-red sensitive video-recording technique was used to study the effects of darkness and light intensities from 0.0001 to 270 photopic lx on the feeding behaviour of herring (Clupea harengus L.). When offered natural zooplankton, consisting of a mixture ofCalanus finmarchicus, Euchaeta norvegica, Oithona similis, Balanus sp. nauplii, and crustacean nauplii as prey, the fish fed by biting (snapping) at light intensities above a threshold of 0.001 lx and were size-selective, taking the larger organisms first. When fed on pure cultures of CaliforniaArtemia sp. nauplii (San Francisco Bay brand), the threshold light intensity was 0.01 lx. Swimming speed increased with increasing light intensity when the fish were actively feeding by biting. When the fish were filter-feeding on high densities ofArtemia sp. nauplii in the light, they continued to school and swimming speed was not related to light intensity.  相似文献   

2.
Larval Rhithropanopeus harrisii (Gould) show nocturnal vertical migration. Larval behavioral responses to different rates of increase and decrease in light intensity were measured in an apparatus with a natural angular light distribution. A central objective was to establish whether phototaxis actually participates in vertical migration. At sunset the level of light adaptation controlled the readiness of the larvae to migrate, while an ascent was initiated by a preductable relative decrease in intensity (e.g. 4.0x10-3s-1). Rates of relative decrease around sunset would evoke continuous upward swimming. Gravity was the orienting cue and there was no change in swimming speed during the ascent. At sunrise, the larval descent was initiated by exposure to an absolute light intensity of about 0.23 log unit above the lower visual threshold. Light served as an orienting cue, as larvae descended by a negative phototaxis. Thus, phototaxis is not a laboratory artifact and does participate in vertical migration. A consideration of behavioral responses of other crustacean zooplankton indicates there is considerable variation in the initiating and directing cues for vertical movements. The variety of behavioral responses of R. harrisii suggests that a synthesis of hypotheses about migration may provide the proper basis for explaining the mechanisms underlying diel vertical migration.  相似文献   

3.
Capture success of the medusa Aurelia aurita preying on various developmental stages of fish larvae was measured together with larval reactivity and escape speed after being stung. These experiments were conducted in the spring of 1983 with A. aurita medusae collected from Loch Etive, Scotland and laboratory-reared larvae of Gadus morhua L., Platichthys flesus L., Pleuronectes platessa L. and Clupea harengus L. Capture success of the medusae increased with medusa size, but decreased with advancing larval development. Smaller species of larvae were more vulnerable to capture. Larval reactivity to encounters with medusae increased with advancing development, and larger species of larvae were more reactive to encounters. Larval escape swimming speeds also increased with advancing larval development and size. These results indicate that earlier stages of larvae within a species and smaller species of larvae at a given stage are more vulnerable to predation by medusae since they are less reactive to encounters. Apparently they are more susceptible to the effects of neurotoxins. Predation rates on different developmental stages of herring larvae are documented and compared with rates predicted by a predation model. Predictions fell within the range of observed predation rates, but tended to overestimate rates by larger medusae feeding on larger herring larvae. This indicates the possibility of predator satiation and/or behavioural avoidance.  相似文献   

4.
Some effects of food density on the growth and behaviour of plaice larvae   总被引:1,自引:0,他引:1  
T. Wyatt 《Marine Biology》1972,14(3):210-216
The effect of food density on the growth, survival, and swimming activity of plaice larvae (Pleuronectes platessa L.) was investigated under controlled laboratory conditions. Suboptimal food concentrations decrease the growth of the height of the body musculature relative to length, and increase the amount of time spent searching for food. Older larvae are able to withstand much longer periods without food than young larvae. On the basis of these experiments, it is suggested that food limitation in a larval plaice population is likely to result in a concave mortality curve.  相似文献   

5.
Responses of the four zoeal stages of the crab Rhithropanopeus harrisii (Gould) to step and continuous changes in hydrostatic pressure were analyzed with a video system. Crabs were collected from the Neuse River estuary (North Carolina, USA) from June to August, 1987. The lower thresholds for step increases and decreases in pressure were 3 and 8 to 10 mbar, respectively. There was little change in sensitivity with zoeal development. Tests of larval responses in a light field that simulated the underwater angular light distribution indicated positive phototaxis does not occur upon pressure changes. In darkness, rates of pressure increase at and above 0.175 mbar s-1 induced high barokinesis and negative geotaxis in all but Stage IV zoeae, which had a threshold of 1.19 mbar s-1. Since larval sinking and descent swimming speeds exceed these threshold rates, larvae can move rapidly enough to produce suprathreshold changes in pressure which evoke behavioral responses. Slow rates of pressure decrease induced passive sinking while rapid rates caused an active ascent. This ascent response upon a pressure decrease is unreported among crustaceans, and is hypothesized to function for avoidance of feeding and respiratory currents of benthic invertebrates. The descent response occurs in all zoeal stages, except IV, at rates of pressure decrease (0.4 to 0.71 mbar s-1) that are within the range of ascent swimming speeds. These results support Sulkin's negative feedback depth regulation model. The absolute distances moved before corrective vertical responses to threshold rates of pressure change are initated delimit the depth regulatory window. In darkness, the asymmetry of the window would lead to an ascent. It is hypothesized that light is an additional component in depth regulation, and that the limits and symmetry of the depth regulatory window may be controlled by the level of light adaptation.  相似文献   

6.
To understand how thermal stratification and food abundance affects the vertical distribution of giant scallop larvae Placopecten magellanicus (Gmelin), a mesocosm study was conducted in January and February 1992. The position of larvae was followed over 55 d in replicated 9-m deep tanks in relation to a sharp thermocline and the presence or absence of phytoplankton. Growth and vertical position of larvae were monitored in separate treatments which included phytoplankton added above the thermocline, below the thermocline, throughout the mesocosm, or absent from the mesocosm. Changes in the vertical position of larvae over time were quantified with a new, profiling, video-optical instrument capable of semi-automatically identifying, counting and sizing larvae. The strong diurnal migration of scallop larvae resulted in aggregations at two interfaces: the air/water interface during the night, and at the thermocline during the day. At times, the concentration of larvae within cm of the surface was > 100 times that in the remaining water column. The formation of bioconvective cells of swimming larvae at the air/water interface allowed larval aggregations to persist throughout the period of darkness. Regardless of the distribution of food, larvae remained above the thermocline during most of the experiment. Therefore, only in those treatments where food was also present above the thermocline was larval growth relatively high. Larger larvae penetrated the thermocline only after reaching a shell length of about 200 m; thus larval size, rather than chronological age, was more important in describing their vertical distribution. The rapid increase in kinematic viscosity with decreasing water temperature at the thermocline may retard the movement of larvae and contribute to aggregation at this interface. The influence of larval size on their vertical distribution, and the resulting potential for horizontal transport to settlement sites, points to the importance of persistent hydrographic features as critical factors contributing to settlement variance in scallops.  相似文献   

7.
Herring larvae were obtained via artificial spawning (Baltic spring spawners, Downs herring). Eggs were immediately transported to the Marine Station (“Meeresstation”) of the Biologische Anstalt Helgoland, transferred into 140] tanks, and incubated at about 10°C. Sea water was circulated through an internal filter. Artificial illumination (neon tubes) was kept at about 1000 Lux (water surface) during 12 h per day; it was than decreased gradually to complete darkness within 30 min. Dawn was also simulated in order to avoid abrupt changes in light intensity. Food consisted of wild plankton (mainly crustacean nauplii) caught every day on Helgoland Roads, and of Artemia salina nauplii. The larvae were fed 1 to 3 times a day; they took the food always within the first half hour after it was offered. Over periods of 5 min each, the time spent for various activities (different modes of swimming, feeding) were recorded. The behavioural patterns of comparable larvae were filmed. The initial phase of prey catching consists of s-shaped body bending; usually the main bend of the body (upper arrows in Figs. 2 and 3) bears a typical directional relationship to the swimming path of the prey focussed (lower arrows). Such body bending is not always succeeded by subsequent steps of prey catching. In the normal prey catching process, aiming is followed by sudden stretching of the body and swallowing of the prey within 0.2 to 0.3 sec. Yolk sac larvae can use their pectoral fins, larvae of more then 15 mm total length also their tail- and dorsal-fins, for stabilization and correction of prey catching movements. In yolk sac larvae, complete prey catching lasts about 1 to 3 sec. Percentage successful prey catching manoeuvres increases with age and experience (Table 2). Initial success percentage was about 1% in Baltic Sea larvae (Kiel) and about 10% in Downs larvae; it rose within 30 to 35 days in Kiel larvae to nearly 60%, in Downs larvae to over 70%. The possible reasons for these differences are discussed; they may be related to body size and composition of planktonic food. Visual perception of food depends on optic capacities of larvae, size and distance of prey, visibility, and “duration of presentation” (time span during which the image of the prey is projected onto the retina). This, in turn, appears to be subject to frequency and amplitude of undulating movements of the head during swimming. The percentage of body positioning for prey catching attains maximum values at prey distances of 2 to 8 mm in yolk sac larvae (Downs), and of 3 to 40 mm in larvae of 15 to 20 mm body length; it decreases steadily with increasing prey distance. Larvae up to 15 mm total length take mainly copepod nauplii, larger larvae preferably copepodites. Distance of prey perception is wider in the horizontal than in the vertical plane; in fact, larvae do not perceive prey underneath the horizontal plane.  相似文献   

8.
Most studies on feeding by herring larvae (Clupea harengus) have taken place in clear, open waters, but several herring stocks around the world spawn in inshore and estuarine regions. An example is the spring-spawning Blackwater Estuary (Essex, England) stock. Samples were collected in this estuary to examine prey selectivity and feeding levels in relation to biological and environmental conditions. Herring larvae negatively selected copepod nauplii, but positively selected the copepodite and adult stages of Acartia spp. Gastropod larvae were also positively selected. Particles >150 μm width were preferred, whilst particles smaller than this value were preferentially rejected. Concentrations of potential prey items in the water were in the range of 6.0 to 49.7 organisms l−1 with a median concentration of 15.0 organisms l−1 (n = 26). These values are towards the low end of prey concentrations quoted in the literature as being required to sustain herring larval growth and survival. However, theoretical considerations suggest that, in this environment, levels of tidally-induced turbulence enhance encounter rates between larval herring and their prey. On the other hand, turbidity is also related to tidal current speed and might reduce feeding success by decreasing underwater light levels. Measurements at two sites in the estuary confirmed that tidally-induced turbidity reduced the effective water depth in which herring larvae could visually feed by up to 50% at times of peak current speed. However, with the gut-content data available in the present study, it was not possible to discern any clear relationships between feeding success and the state of the tide. Feeding success appeared to be more strongly influenced by surface light-levels. Received: 24 June 1998 / Accepted: 17 February 1999  相似文献   

9.
A simple system of shadow cinematography, consisting of a small tungsten halogen lamp, 2 large biconvex lenses and a 16 mm camera, is described for recording the swimming and feeding behaviour of larval fish. The system can be used either with infra-red film to record swimming behaviour independently of ambient light intensity, or with high-resolution film to record food organisms and feeding behaviour. Small plankton organisms of 0.2 mm width can be resolved using high-resolution film. The technique has been used to record the behaviour of plaice larvae (Pleuronectes platessa L.) feeding on the nauplii of Artemia salina L. The perceptive field of the larvae extends to approximately ±60° in azimuth, ±40° in elevation and 1.5 body lengths in range.  相似文献   

10.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

11.
Predation of different-sized Hyperoche medusarum (Hyperiida: Amphipoda) on larvae of the Pacific herring Clupea harengus pallasi was studied in the laboratory. The attacking rate of H. medusarum was a function of herring larvae size as well as size of the predator, and varied from 0.15 to 0.95 larvae attacked h-1 per hyperiid. In the range of 7.55 to 16.05 mm total larval length, vulnerability to predation was highest for 13.3 and 13.7 mm larvae. Large hyperiids swam faster and covered a wider area during searching and were more effective predators than small ones. Predation seemed to be influenced by light, and its intensity was dependent on the duration of previous food deprivation of the hyperiid.This study was sponsored by the International Bureau of the Gesellschaft für Kernenergiever-wertung in Schiffbau und Schiffahrt in connection with the German Canadian agreement on scientific and technical cooperation.  相似文献   

12.
Responses of echinoid larvae to food patches of different algal densities   总被引:1,自引:0,他引:1  
High densities of larvae have been found in areas of high primary production, but it remains unclear whether this is the result of hydrodynamics or of larval aggregative behaviour in the presence of food. In this study, we examined changes in the vertical distribution and swimming patterns of four-armed larvae of the sea-urchin Echinometra lucunter (Linnaeus) around food patches of a range of microalgal densities. We reared larvae in the laboratory in a high or low concentration of either single (Isochrysis galbana) or mixed (I. galbana, Dunaliella tertiolecta, Thalassiosira weissflogii) microalgal species. In Plexiglas cylinders, we experimentally constructed haloclines in which the salinity of the bottom water-layer was 33‰ and that of the top water-layer was 24‰. In a thin layer in the middle of the halocline, we inserted a food patch that consisted of 0, 2500, 5000 or 10 000 T. weissflogii cells ml−1. The presence of a food patch had a pronounced effect on the vertical distribution of larvae. This effect depended upon the algal density of the food patch and varied with dietary conditioning. The number of larvae that were above or within the patch decreased with increasing algal density, and was greater if larvae were reared in low-ration or single-species diets than in high-ration or mixed-species diets. Tracking of individual vertical swimming paths showed that within a few minutes, larvae swam into the patches of low algal density, and to positions just below the patches of the two higher algal densities, and remained there until the end of the experimental period. The greater number of algal cells in the digestive tracts of larvae from treatments with a food patch than in those without a patch confirmed that larvae were feeding on the microalgal cells of the patch. To our knowledge, this is the first study to experimentally show an aggregative behavioural response of invertebrate larvae to a food patch. Such a response may reduce the probability of food limitation and therefore enhance larval survival. Received: 14 February 1997 / Accepted: 24 September 1997  相似文献   

13.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

14.
Ciliary feeding by tornariae of Ptychodera flava (Eschholtz) and other tornariae from the plankton is compared with Garstang's (1939) account of feeding by these larvae, which account contains errors, and with ciliary feeding by echinoderm larvae. Some details of ciliation are also described. As in echinoderm larvae, band cilia beat away from the food grooves and retain particles on the upstream side of the ciliated band, but tornariae use muscles less in ingestion and rejection. In early-stage and most late-stage echinoderm larvae, the ciliated band functions in both swimming and feeding, but in tornariae the ciliated band is arranged meridionally so that few portions of the ciliated band produce a posteriorly-directed current and a locomotory teletroch is needed for swimming. Faster-swimming tornariae observed in bowls achieved higher ingestion and clearance rates. These observations raise questions about form and function in the giant Planctosphaera pelagica. Cilia of the locomotory telotroch increase in length as tornariae increase in size, but there is little increase in length of cilia which capture food. Instead, the length of the ciliated band increases relative to other larval tissues by means of increasing convolution of the band. Hence, the volume of water processed for food probably increases relative to energy expended by larvae during development to the tentaculate stage. However, the length of the ciliated band may decrease relative to other larval surfaces with continued increase in size beyond this stage. These interpretations of growth and feeding efficiency are consistent with the reported geographic distribution of tornariae with and without tentacles.  相似文献   

15.
The ivory tree coral Oculina varicosa (Leseur, 1820) is an ahermatypic branching scleractinian that colonizes limestone ledges at depths of 6–100 m along the Atlantic coast of Florida. This paper describes the development of embryos and larvae from shallow-water O. varicosa, collected at 6–8 m depth in July 1999 off Fort Pierce, Florida (27°32.542 N; 79°58.732 W). The effect of temperature on embryogenesis, larval survival, and larval swimming speed were examined in the laboratory. Ontogenetic changes in geotaxis and phototaxis were also investigated. Embryos developed via spiral cleavage from small (100 µm), negatively buoyant eggs. Ciliated larvae developed after 6–9 h at 25°C. Embryogenesis ceased at 10°C, was inhibited at 17°C, and progressed normally at 25°C and 30°C. Larval survival, however, was high across the full range of experimental temperatures (11–31°C), although mortality increased in the warmest treatments (26°C and 31°C). Larval swimming speed was highest at 25°C, and lower at the temperature extremes (5°C and 35°C). An ontogenetic change in geotaxis was observed; newly ciliated larvae swam to the water surface and remained there for approximately 18 h, after which they swam briefly throughout the water column, then became demersal. Early larvae showed no response to light stimulation, but at 14 and 23 days larvae appeared to exhibit negatively phototactic behavior. Although low temperatures inhibited the development of O. varicosa embryos, the larvae survived temperature extremes for extended periods of time. Ontogenetic changes in larval behavior may ensure that competent larvae are close to the benthos to facilitate settlement. Previous experiments on survival, swimming speeds, and observations on behavior of O. varicosa larvae from deep-water adults indicate that there is no difference between larvae of the deep and shallow populations.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
Following yolk resorption, laboratory-reared larval Baltic herring (Clupea harengus L.) were exposed to two sequences of food restriction for 5 d and re-alimentation for 10 d. Comparisons regarding larval growth (standard length and content of water-soluble protein), mortality and content of the sum of trypsin and trypsinogen were made with larvae at a continuous high ration. Larvae exposed to varying prey abundance grew less in length than the control, and during the second high-ration period (Day 22 to 32) growth in length ceased. From the first low-ration period onwards, the content of water-soluble protein in these larvae was lower than that of the control larvae, and the survival rate of the low-high ration group was 59% compared to 77% in the larvae at a continuous high ration. In contrast, the effects of varying food availability were minor on larval content of trypsin and trypsinogen. Results are compared with previous findings in larval Clyde herring, and the effects of larval stock and timing and duration of food restriction on larval growth performance are discussed.  相似文献   

17.
Phylogenetic analyses have demonstrated that nonfeeding larvae have evolved from feeding larvae many times among marine invertebrates. In light of this observation, it is surprising that an intermediate strategy, a larva that can feed but is provisioned with enough energy to metamorphose without acquiring exogenous food (i.e., facultative planktotrophy), is rare. A hypothesis for the lack of facultative planktotrophic species among marine invertebrates is that the transition from feeding to nonfeeding is rapid due to this intermediate stage being evolutionarily unstable. Evidence that would support this hypothesis is if species with facultative planktotrophy have reduced food assimilation when compared with obligate planktotrophs. We studied a species with facultative planktotrophic larvae, Clypeaster rosaceus, that is very near the boundary between facultative and obligatory planktotrophy, to answer two questions: (1) does feeding during the larval stage result in energy gains in larval or juvenile stages and (2) if not, are larvae capable of assimilating exogenous food at all. Our measurements of energetics in larval and juvenile stages show that C. rosaceus larvae accumulate very little if any energy when fed, but stable isotope data indicate that larvae are able to assimilate some food. Our results are consistent with similar studies on facultative planktotrophic larvae suggesting poor food assimilation and rapid loss of larval feeding after a population evolves the ability to reach metamorphosis without feeding (lecithotrophy).  相似文献   

18.
The garpike Belone belone enters the Wadden Sea in April, to spawn in May and June. The large eggs (3mm) bear numerous, long hair-like filaments. Embryonic and larval development were investigated during rearing experiments in 1970 and 1971. The development of the embryo is described, with special reference to the circulatory system and Kupffer's vesicles. The embryos display ventilation with pectoral fins and gill opercula when still in the egg. They hatch after 2 or 3 weeks at 20° and 16°C, respectively. Newly hatched larvae accept a wide variety of prey, including dry, aquarium fish food. Growth, feeding behaviour, swimming performance, and survival of the juveniles were investigated in the laboratory and in a small outdoor pond. Young garpikes (1 to 3 cm standard length) survive at temperatures ranging from 13° to 25°C, and salinities from 7 to 50%. They may reach 12 to 15 cm in their first summer. Their cruising speed is estimated to be 1 to 2 body lengths/sec. Garpikes disappear from The Wadden Sea in October, and probably migrate offshore. Observations on the behaviour of adults (40 to 70 cm total length) in a large indoor tank, indicate that they avoid high light intensities in winter. Adults display panic reactions when the water temperature drops below 6° to 7°C; this indicates that garpikes probably migrate in winter to greater depth (lower light intensity), to avoid water temperatures below 6°C and rough weather conditions in the upper water layers.  相似文献   

19.
Rates of predation by the invertebrates Aurelia aurita, Thysanoessa raschi and Euchaeta norvegica on larval stages of cod (Gadus morhua L.), flunder (Platichthys flesus L.), plaice (Pleuronectes platessa L.), herring (Clupea harengus L.), and turbot (Scophthalmus maximus L.) were determined. Experiments were conducted in late winter and early spring 1982 with predators collected in Loch Etive, Scotland and prey obtained from several locations in Great Britain. Early stages of the smallest species, cod, flounder and turbot, tended to be most vulnerable to all three predators, while the early stages of the larger species, plaice and herring, and older stages of all species, were less vulnerable. For all stages and species of larvae, predation rates by the three predators were most closely related to larval length and escape swimming speed. Larval length itself was closely correlated to indices of larval escape ability. Low predation rates on large larvae by E. norvegica could be due to handling difficulties, whereas for A. aurita and T. raschi these low rates were due to escape abilities of the larger larvae. Prey movement is an important stimulus eliciting predation in E. norvegica but not in A. aurita or T. raschi.  相似文献   

20.
The utilization and fate of nitrogen in larvae of plaice (Pleuronectes platessa), blenny (Blennius pavo) and herring (Clupea harengus), from the stage of first-feeding to metamorphosis, was examined under laboratory conditions. Rates of ammonia excretion, primary amine defaecation, and growth in terms of protein-nitrogen were monitored throughout larval life. Data were used to calculate daily ration, the coefficient of nitrogen utilization (absorption efficiency), and gross and net growth efficiencies. The developmental pattern of nitrogen balance was similar for plaice and blenny larvae. These species showed increasing growth efficiency (k1: 55 to 80%) with decreasing weight-specific waste nitrogen losses with age. Absorption efficiencies. were high (83 to 98%) in plaice and blenny larvae, and tended to increase with development in the former species. Ration relative to body weight decreased with growth in both species. Herring larval development, although at a slower rate than blenny and plaice, appeared normal up to 33 d, after which high mortality occurred. Absorption efficiency in this species tended to decline (83 to 43%) with age, until metabolic costs exceeded the absorbed ration and growth ceased. Artemia sp. nauplii proved a suitable food source for the rearing of plaice and blenny larvae, but this diet may have long-term toxicity or deficiency effects on herring. Availability and density of food affected nitrogen balance in the larvae of all three species. Feeding stimulated the output of wastes in excretion and defaecation by a factor of up to ten times the 12-h non-feeding basal rates. Waste nitrogen output reached a peak some 2 to 3 h after commencement of feeding and returned slowly to the baseline in 5 to 10 h after cessation of feeding. There was an asymptotic increase in ration, ammonia output and growth of larvae as prey density increased. Ration saturated at a higher prey density (>4 prey ml-1) than either growth or excretion rate (1 prey ml-1). Thus the efficiency with which food is absorbed and utilized for growth must eventually decline in response to high prey density. The idea that larval fish are adapted to maximize ingestion and growth rate, rather than optimize growth efficiency and thus to respond to prey occurring in either low density or in occasional patches, is supported by these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号