首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

2.
Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified Community Bureau of Reference (BCR) sequential extraction procedure. The purpose of the BCR-sequential extraction used in this study was to examine the availability of CCA metals in treated wood for reuse. Both As and Cr had a slightly higher concentration in the sludge sample than in original CCA-treated wood. The sequential extraction showed that As and Cr were principally existed in an oxidizable fraction (As, 67%; Cr, 88%) in original CCA-treated wood. Only 1% of both As and Cr were extracted by hot nitric acid with the last extraction step. The distribution of As and Cr changed markedly in liquefied CCA-treated wood sludge.The amount of As in the exchangeable/acid extractable fraction increased from 16% to 85% while the amount of Cr increased from 3% to 54%. Only about 3% of As was present in the oxidizable fraction. However, there was still about 34% of Cr in the same fraction. Based on these results from sequential extraction procedures, it can be concluded that the accessibilities of CCA metals increase markedly by the liquefaction–precipitation process.  相似文献   

3.

The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.

  相似文献   

4.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

5.
Kim H  Townsend T 《Chemosphere》2007,67(6):1252-1257
Research was conducted to investigate the potential impact of CCA-treated wood and other arsenic-free Cu-based preservative-treated wood on microorganisms, involved in the anaerobic decomposition of waste in landfills. Wood preservatives used included alkaline copper quat (ACQ), copper citrate (CC), copper boron azole (CBA), copper dimethyldithiocarbamate (CDDC), and chromated copper arsenate (CCA). The biochemical methane potential (BMP) assay was used to estimate the possible impacts. The methane yields of mixtures of preservative-treated wood or untreated wood with cellulose (group 1) and these wood samples only (group 2) were determined. An analysis of variance (ANOVA) test found that there were no significant differences among methane yields results in either group 1 or group 2, at the 0.05 level of significance. The results indicate that under the conditions tested, none of the treated wood products evaluated were toxic to the methane-producing organisms. At the end of the assays, test bottle contents were analyzed for Cu, Cr, and As. When the fraction of each metal in the solution (relative to original metal in the wood, leachability %) was examined, As was present at the great extent. The leachability of As was in the range from 15.1% to 21.7% while relatively low leachability (1.7-7.6%) of Cu was observed.  相似文献   

6.
The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.  相似文献   

7.
Chromated copper arsenate (CCA) treated wood has been used for more than 50 years. Recent attention has been focused on appropriate disposal of CCA-treated wood when its service life ends. Groups in the US and Europe concerned with the possibility of arsenic migration to groundwater from disposed CCA-treated wood have proposed that consumers be required to dispose of the wood as a hazardous waste, in the most protective of landfills. We examined available data for evidence of arsenic migration from unlined construction and demolition (C&D) debris landfills in Florida, where CCA-treated wood is disposed. Florida was chosen because soil, groundwater, landfill design, weather, and levels of CCA-treated wood use make the state a uniquely sensitive indicator for observing arsenic migration from CCA-treated wood disposal sites, should it occur. We developed and quality-checked a CCA-treated wood disposal model to estimate the amount of wood and associated arsenic disposed. By 2000, an estimated 13 million kg of arsenic in CCA-treated wood was disposed in Florida; however, groundwater monitoring data do not indicate that arsenic is migrating from unlined C&D landfills. Our results provide evidence that highly stringent regulation of CCA-treated wood disposal, such as treatment as a hazardous waste, is unnecessary.  相似文献   

8.
Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles - indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic treatment. Instead particles rich in Ca and S were now found, indicating precipitation of Ca-sulphates due to addition of sulphuric acid in connection with the electrodialytic treatment. Cu and Cr were still found associated with incompletely combusted wood particles and incorporated in matrix particles. Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were reduced by 86% for As, 15% for Cu and 33% for Cr.  相似文献   

9.
Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA-treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals' leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers.  相似文献   

10.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

11.
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg?1 dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg?1 of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg?1 of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha?1 of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas.  相似文献   

12.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

13.
Surface soil samples were collected from 52 sites around Guanting Reservoir in Beijing, China, and contents of 'total' metals (Cu, Zn, Pb, Cd, As, Ni and Cr) were determined. The results indicate that the degree of heavy metal pollution in the soils declines in the order of Cd>Cr>Zn>As>Cu>Ni>Pb. Based on the results of a combination of multivariate statistics and geostatiscal analyses, it was concluded that land application of phosphate fertilizer, wastewater and sludge were the primary sources of Cd and Zn in soils. Whereas As, Cu, Cr and Ni in some soils were due to natural rock weathering. The sources of Pb in soils only partially originated from land application of phosphate fertilizer, but mainly from vehicle exhaust. The greatest concentrations of all metals, except for Pb, were found in Huailai County and the towns of Yanghedaqiao and Guanting.  相似文献   

14.
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.  相似文献   

15.
Copper partitioning was studied in seven calcareous soils at moisture content corresponding to 1.2 times the field moisture content (soil water potential 7.84 J kg(-1)). Copper retention was accompanied by the release in soil solution of Ca(2+), Mg(2+), Na(+), and H(+), and the total amount of these cations released was 0.8 to 1.09 times the amount of Cu sorbed (mol(c):mol(c)). The relationships between Cu activity and pH, and the balance of cations in soils correspond with the surface precipitation of CuCO(3) as the main mechanism of Cu retention. The values of ion activity product of surface precipitate were close for all studied soils with the average log(IAP(CuCO(3)))=-15.51. The relationship between copper activity in soil solutions and soil properties is well fit by a regression relating pCu (-log copper ion activity) with soil pH, total Cu, and carbonate content.  相似文献   

16.
Luo W  Lu Y  Wang G  Shi Y  Wang T  Giesy JP 《Chemosphere》2008,72(5):797-802
Concentrations of arsenic (As) were determined in soils of 5 industrial sites in an urban area of Beijing, China. Fifty seven typical surface soils were sampled to determine total concentrations of metals, pH and dissolved organic carbon (DOC). One hundred and eight deep soils were submitted to a four-step, sequential extraction to assess the relative mobility and bioavailability of As in the soil profiles. Total concentrations of As in surface soils ranged from 5.7 to 2.3 x 10(1) mg kg(-1), dw with greater concentrations inside the perimeter of the chemical plant which had greater concentrations than did other plants. 75.4% of surface soil samples in the industrial area contained concentrations of As that were greater than was considered to be the background concentration of 7.8 mg kg(-1), dw for the region. The mean concentration (9.9 mg kg(-1), dw) in the industrial soils was greater than that soils from other type of land use. Concentrations of As were significantly and negatively correlated with soil pH and DOC in industrial soils. Although mean concentration of total As in the soils from all sites were less at greater depths, the entire range from 0 to 180 cm (especially 0-80 cm) contained concentrations of As that were greater than background. Sequential extractions of soil indicated that only some surface soils had relatively great amount of extractable fraction of As. Most soils had relatively great amount of residual As. This result suggests that most arsenic in Beijing industrial soils should be immobile and of limited bioavailability.  相似文献   

17.
Diuron mobility through vineyard soils contaminated with copper   总被引:1,自引:0,他引:1  
The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.  相似文献   

18.
In the urban-rural transitional area of Hangzhou, China, 74 topsoil samples were collected from vegetable fields to measure the contents of arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). The combination of multivariate statistical and geostatistical methods successfully separated the contaminating elements (As, Cd, Cu, Hg, Pb and Zn) from uncontaminated elements (Co, Cr, Ni and Mn). A significant correlation was found between these uncontaminated elements and total Al2O3, Fe2O3, and SiO2 of the soils, indicating that the source of these elements was mainly controlled by soil-forming factors. On the other hand, these contaminating elements showed relatively weaker correlation and higher spatial variability, indicating that their enrichment and spatial heterogeneity were mostly affected by anthropic inputs. Through the pollution evaluation, it was found that only 30.8% of the study area did not suffer from moderate or severe pollution.  相似文献   

19.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

20.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号