首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Site selection in CO2 ocean sequestration is examined based on the idea that a site where injected CO2 is efficiently diluted is favourable in reducing/avoiding biological impacts. Simulations of CO2 injection into several sites by an eddy-resolving oceanic general circulation model (OGCM) show that the maximum CO2 concentration differs by a factor of 10 among sites. The distribution of eddy activity is the most important causative factor producing the geographical differences in CO2 dilution. Based on the relationship between the maximum CO2 concentration and eddy activity, we estimated the distribution of the maximum CO2 injection rate by a proposed method, which does not cause chronic impacts on biota. Around Japan, extensive ocean volume has the potential to dilute 20 million tonnes per year without chronic impacts, and some areas can be injected with 80 million tonnes per year.  相似文献   

2.
A new apparatus employing a modular, mechanically agitated gas-inducing crystallizer is used to demonstrate the capture of CO2 via hydrate crystallization. The crystallizer enhances the contact of hydrate forming gases with water and thus the rate of hydrate crystallization increases. Flue gas (CO2/N2) and fuel gas (CO2/H2) mixtures were used to represent post- and precombustion capture. A comparison between the rates of hydrate formation in different crystallizers is presented by defining a metric called the normalized rate of hydrate formation. The gas uptake and the separation efficiency for the fuel and flue gas mixtures were found to be greater compared to the results obtained in a smaller scale stirred tank reactor (Kumar et al., 2009c, Linga et al., 2008). The gas uptake and CO2 recovery for flue gas mixture in the presence of THF obtained in this work was higher than that reported in the literature with tetra-n-butyl ammonium bromide and tetra-n-butyl ammonium fluoride (Fan et al., 2009, Li et al., 2009). Although hydrate crystallization is able to capture CO2, the power required for mechanical agitation was found to be very significant. If the hydrate process is to be used industrially then hydrate crystallization must be carried out without mechanical agitation.  相似文献   

3.
Industrial-scale injection of CO2 into saline formations in sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration aquifers. In this paper, we discuss how such basin-scale hydrogeologic impacts (1) may reduce current storage capacity estimates, and (2) can affect regulation of CO2 storage projects. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO2 storage projects (sites) in a core injection area most suitable for long-term storage. Each project is assumed to inject five million tonnes of CO2 per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO2–brine flow processes and the large-scale groundwater flow patterns in response to CO2 storage. The far-field pressure buildup predicted for this selected sequestration scenario support recent studies in that environmental concerns related to near- and far-field pressure buildup may be a limiting factor on CO2 storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO2, may have to be revised based on assessments of pressure perturbations and their potential impacts on caprock integrity and groundwater resources. Our results suggest that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrogeologic response may be affected by interference between individual storage sites. We also discuss some of the challenges in making reliable predictions of large-scale hydrogeologic impacts related to CO2 sequestration projects.  相似文献   

4.
The dissolution of CO2 from a CO2 lake with and without a hydrate layer, located at a flat bottom at 3000 m depth has been modeled using the MIT General Circulation Model coupled with the General Ocean Turbulence Model (GOTM). The vertical turbulent mixing scheme takes into account density effects and should give more realistic results for the CO2 plume than previously used constant eddy diffusivity models. The introduction of a third direction gives qualitatively different results for the spreading of the CO2 plume than previous 2D results. The dissolution rate and near field dissolved CO2 concentrations approach a steady state for a given far field ocean current within less than a day. The dissolution rate is highly dependent on the velocity of the ambient current and is reduced with 1.6 when a hydrate layer is introduced.  相似文献   

5.
Geologic carbon sequestration is the injection of anthropogenic CO2 into deep geologic formations where the CO2 is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO2 into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.  相似文献   

6.
Reservoirs of clathrate hydrates of natural gases (hydrates), found worldwide and containing huge amounts of bound natural gases (mostly methane), represent potentially vast and yet untapped energy resources. Since CO2-containing hydrates are considerably more stable thermodynamically than methane hydrates, if we find a way to replace the original hydrate-bound hydrocarbons by the CO2, two goals can be accomplished at the same time: safe storage of carbon dioxide in hydrate reservoirs, and in situ release of hydrocarbon gas. We have applied the techniques of Magnetic Resonance Imaging (MRI) as a tool to visualize the conversion of CH4 hydrate within Bentheim sandstone matrix into the CO2 hydrate. Corresponding model systems have been simulated using the Phase Field Theory approach. Our theoretical studies indicate that the kinetic behaviour of the systems closely resembles that of CO2 transport through an aqueous solution. We have interpreted this to mean that the hydrate and the matrix mineral surfaces are separated by liquid-containing channels. These channels will serve as escape routes for released natural gas, as well as distribution channels for injected CO2.  相似文献   

7.
Carbon dioxide contents of coals in the Sydney Basin vary both aerially and stratigraphically. In places, the coal seam gas is almost pure CO2 that was introduced from deep magmatic sources via faults and replaced pre-existing CH4. In some respects this process is analogous to sequestration of anthropogenic CO2. Laboratory studies indicate that CO2:CH4 storage capacity ratios for Sydney Basin coals are up to ∼2 and gas diffusivity is greater for CO2 by a factor of up to 1.5.Present-day distribution of CO2 in the coals is controlled by geological structure, depth and a combination of hydrostatic and capillary pressures. Under present-day PT conditions, most of the CO2 occurs in solution at depths greater than about 650 m; at shallower depths, larger volumes of CO2 occur in gaseous form and as adsorbed molecules in the coal due to rapidly decreasing CO2 solubility. The CO2 has apparently migrated up to structural highs and is concentrated in anticlines and in up-dip sections of monoclines and sealing faults. CO2 sequestered in coal measure sequences similar to those of the Sydney Basin may behave in a similar way and, in the long term, equilibrate according to the prevailing PT conditions.In situ CO2 contents of Sydney Basin coals range up to 20 m3/t. Comparisons of adsorption isotherm data measured on ground coal particles with in situ gas contents of Sydney Basin coals indicate that the volumes of CO2 stored do not exceed ∼60% of the total CO2 storage capacity. Therefore, the maximum CO2 saturation that may be achieved during sequestration in analogous coals is likely to be considerably lower than the theoretical values indicated by adsorption isotherms.  相似文献   

8.
Qualitative proposals to control atmospheric CO2 concentrations by spreading crushed olivine rock along the Earth's coastlines, thereby accelerating weathering reactions, are presently attracting considerable attention. This paper provides a critical evaluation of the concept, demonstrating quantitatively whether or not it can contribute significantly to CO2 sequestration. The feasibility of the concept depends on the rate of olivine dissolution, the sequestration capacity of the dominant reaction, and its CO2 footprint. Kinetics calculations show that offsetting 30% of worldwide 1990 CO2 emissions by beach weathering means distributing of 5.0 Gt of olivine per year. For mean seawater temperatures of 15–25 °C, olivine sand (300 μm grain size) takes 700–2100 years to reach the necessary steady state sequestration rate and is therefore of little practical value. To obtain useful, steady state CO2 uptake rates within 15–20 years requires grain sizes <10 μm. However, the preparation and movement of the required material poses major economic, infrastructural and public health questions. We conclude that coastal spreading of olivine is not a viable method of CO2 sequestration on the scale needed. The method certainly cannot replace CCS technologies as a means of controlling atmospheric CO2 concentrations.  相似文献   

9.
Oxycombustion is being considered as a promising solution to carbon capture and sequestration. Standard sampling and measurement methods may or may not be valid under oxycombustion conditions because the flue gas differs significantly from that of conventional air-blown coal combustion.Bench-scale tests were conducted to evaluate the measurement validity of continuous mercury monitors (CMMs), with and without a flue gas preconditioning unit, in a simulated oxycombustion flue gas with varied CO2 concentrations. Tests also included mercury capture with activated carbon in typical oxyfuel combustion flue gas. Research data indicated that highly concentrated CO2 streams affect the accuracy of the mass flow rate and the subsequent gaseous mercury measurement, although this is specific to the type of CMM. Concentrated CO2 streams also induced solid precipitation in the wet-chemistry conversion unit and resulted in a biased measurement of the gas-phase mercury. Flue gas dilution appeared to provide accurate measurement of total gas-phase mercury and be applicable to mercury measurement in highly concentrated CO2 streams, although mercury speciation appeared to be problematic and will require additional modification and validation. Mercury capture with activated carbon under CO2-enriched conditions showed similar performance to typical high-acid coal combustion flue gas.  相似文献   

10.
A column of silica gel was employed to contact water with flue gas (CO2/N2) mixture to assess if CO2 can be separated by hydrate crystallization. Three different silica gels were used. One with a pore size of 30 nm (particle size 40–75 μm) and two with a pore size of 100 nm and particle sizes of 40–75 and 75–200 μm respectively. The observed trends indicate that larger pores and particle size increase the gas consumption, CO2 recovery, separation factor and water conversion to hydrate. Thus, the gel (gel #3) with the larger particle size and larger pore size was chosen to carry out experiments with concentrated CO2 mixtures and for experiments in the presence of tetrahydrofuran (THF), which itself is a hydrate forming substance. Addition of THF reduces the operating pressure in the crystallizer but it also reduces the gas uptake. Gel #3 was also used in experiments with a fuel gas (CO2/H2) mixture in order to recover CO2 and H2. It was found that the gel column performs as well as a stirred reactor in separating the gas components from both flue gas and fuel gas mixtures. However, the crystallization rate and hydrate yield are considerably enhanced in the former. Finally the need for stirring is eliminated with the gel column which is enormously beneficial economically.  相似文献   

11.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

12.
In general, CO2 sequestration by carbonation is estimated by laboratory experimentation and geochemical simulation. In this study, however, estimation is based on a natural analogue study of the Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. This region has great potential in terms of geological and geochemical environments for CO2 sequestration. Outcropping Miocene basalt in the study area shows extensive serpentinization and carbonation. The carbon stable isotopes of carbonates lie on the depleted side of the Lohmann meteoric calcite line, which demonstrates that the carbonates most probably precipitate directly from meteoric fluid, and water–rock interaction is less involved in the carbonation process. Oxygen stable isotope examinations also show much depleted ratios, representative of product formation under low temperatures (∼50–90 °C). This translates to a depth of 1–2 km, which is a practical depth for a CO2 sequestration reservoir. According to petrographic observation and electron microprobe analysis, the diopside grains in the basalt are resistant to serpentinization and carbonation; therefore, the fluid causing alteration is likely enriched with calcium and there must be additional sources of calcium for carbon mineralization. These derived geochemical properties of the fluid support the late Miocene sandstone and enclosed basalts as having high potential for being a CO2 sequestration reservoir. Moreover, the existing geochemical environments allow for mineralogical assemblages of ultramafic xenoliths, indicating that forsterite, orthopyroxene and feldspar minerals are readily replaced by carbonates. Based on the mineral transformation in xenoliths, the capacity of CO2 mineral sequestration of the Miocene basalt is semi-quantitatively estimated at 94.15 kg CO2 chemically trapped per 1 m3 basalt. With this value, total CO2 sequestration capacity can be evaluated by a geophysical survey of the amount of viable Miocene basalt at the potential sites. Such a survey is required in the near future.  相似文献   

13.
The double porosity model for fissured rocks, such as limestones and dolomites, has some features that may be relevant for carbon sequestration. Numerical simulations were conducted to study the influence of matrix diffusion on the trapping mechanisms relevant for the long-term fate of CO2 injected in fissured rocks. The simulations show that, due to molecular diffusion of CO2 into the rock matrix, dissolution trapping and hydrodynamic trapping are more effective in double porosity aquifers than in an equivalent porous media. Mineral trapping, although assessed indirectly, is also probably more relevant in double porosity aquifers due to the larger contact surface and longer contact time between dissolved CO2 and rock minerals. However, stratigraphic/structural trapping is less efficient in double porosity media, because at short times CO2 is stored only in the fissures, requiring large aquifer volumes and increasing the risk associated to the occurrence of imperfections in the cap-rock through which leakage can occur. This increased risk is also a reality when considering storage in aquifers with a regional flow gradient, since the CO2 free-phase will move faster due to the higher flow velocities in fissured media and discharge zones may be reached sooner.  相似文献   

14.
Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO2 year?1 in 1921 to 60,635 t CO2 year?1 in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO2 year?1 by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO2 fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas.  相似文献   

15.
The direct injection of CO2 into the deep ocean is one of the ways for the mitigation of the global warming. There is, however, a concern about its environmental impact near the injection point. To minimize its biological impact, it is necessary to make CO2 disperse as fast as possible and it is thought that injection with pipes towed by moving-ships is effective for this purpose. Because the injection ships are planned to move in the site, the order of magnitude of which is 102 km, a mesoscale model is required to predict CO2 fate in seawater. At the same time, it is required to predict the concentration precisely near the injection points, which move with the ships in the mesoscale domain. In this study, a multi-scale ocean model was developed to analyze the dispersion of CO2 in the deep ocean: the model consists of a fixed mesoscale domain and 5 small-scale domains nesting in the mesoscale domain. Each small-scale domain involves 6 pipes and moves along with the trajectories of the injection ships. From the results of the present numerical simulation, the developed technique demonstrated its applicability as a tool to optimise the system to dilute CO2 below some criterion of biological impact.  相似文献   

16.
In the carbon capture and storage (CCS) chain, transport and storage set different requirements for the composition of the gas stream mainly containing carbon dioxide (CO2). Currently, there is a lack of standards to define the required quality for CO2 pipelines. This study investigates and recommends likely maximum allowable concentrations of impurities in the CO2 for safe transportation in pipelines. The focus is on CO2 streams from pre-combustion processes. Among the issues addressed are safety and toxicity limits, compression work, hydrate formation, corrosion and free water formation, including the cross-effect of H2S and H2O and of H2O and CH4.  相似文献   

17.
The membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture.  相似文献   

18.
Elevated levels of CO2 in the atmosphere have been linked to the rise in land and sea temperature [Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D. (Eds.), The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK, p. 944]. To demonstrate geological carbon sequestration as a mitigation technique, a carbon dioxide injection experiment was conducted in East Texas. The target – Frio formation – is a highly porous, permeable and unconsolidated sandstone. The specific interval is the Frio C sand, which originally was saturated with saline formation water. At the injection location, the Frio C sand dips 18° to the south. To monitor the injected CO2 spreading in the formation, an old well from 1956 drilled into the deeper Yegua formation was selected as the observation well. The injection well was drilled at a distance of 100 ft downdip from the monitoring well. Several borehole measurement methods were available to monitor the CO2 injection, but the most suitable technology was thought to be the pulsed neutron logging. This logging is used widely in cased hole, and the measured macroscopic thermal absorption cross-section (Σ) is sensitive to CO2 saturation in high porosity saline water environments. Several log examples are given demonstrating successful the monitoring of the CO2 plume moving through the two boreholes and the resulting saturation changes.  相似文献   

19.
In order to evaluate the risk of hydrate formation in CO2 transport one has to be able to predict the water content in the fluid phase in equilibrium with the CO2-hydrate. A literature review has identified some knowledge gaps, for example, there are no results available at temperatures lower than 243.15 K (?30 °C); and none of the models found in literature predicts the water content with high accuracy. A model based on equality of water fugacity in fluid and hydrate phase is presented here and used for the predictions of water content in equilibrium with hydrates. Although this model gives better accuracy in the overall temperature and pressure ranges of measurements than the models found in the literature, it is not accurate enough to satisfy the requirements of CO2 transport. The simulation results also show that it is possible to form hydrate at low water content, such as xw = 50 vppm, if temperature is low enough. In order to verify the results and improve the model accuracy further, more experimental data in a larger temperature and pressure region are required.  相似文献   

20.
This work presents contact angle measurements for CO2–water–quartz/calcite systems at general sequestration pressure and temperature conditions (200–3000 psig and 77–122 °F). The effect of drop volume, repeated exposure of the substrates to dense water saturated CO2, pressure and temperature on the contact angles is examined. In the 1st measurement cycle, the contact angles for the quartz substrate varied from 46 to 48° and 47 to 46° for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrate, these values varied from 45 to 48° and 42 to 40°, respectively. Remarkably, this work highlights a characteristic permanent shift in the contact angle data with repeated exposure to dense, water saturated, CO2. The contact angle data trends after repeated exposure to the dense, water saturated CO2 varied from 89 to 91° and 85 to 80° for the quartz substrate for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrates, these values varied from 60 to 59° and 54 to 48°, respectively. This important observation has serious implications towards the design and safety issues, as a permanent positive contact angle shift indicates lower CO2 retention capabilities of sequestration sites due to a reduction in the capillary pressure. It is further confirmed that the permanent shift in the contact angle is due to surface phenomena. With an increase in temperature (from 77 to 122 °F), the contact angle shift is reduced from about 45° to about 20° for quartz substrates. Other observations in the contact angle data with respect to pressure are in good agreement with the trends reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号