首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is proposed that unstructured food webs may more closely resemble real marine food webs than does the conventional, structured model. An unstructured food-web model leads to a set of very simple expressions for the potential partition of matter in the food web in steady state, including the potential fluxes of material and biomasses of trophic types and the concentration of trace substances in the members and materials of such a food web. The approach may explain some anomalies of relative predator-prey biomasses and of trace-element distribution, and may be of further use for analyzing and predicting (a) the tropho-dynamic parameters of marine systems, (b) the trophic positions, and the steadystate fluxes and biomasses of marine organisms, (c) the distribution of trace materials in marine biota; and for relating findings among these areas. Other matters, such as limitations of food conversion, indicated by concentration factors of trace substances, the possibilities of non-causal association of anomalously high levels of trace substances (including pollutants) with diseased or otherwise abnormal marine creatures, and an inverse relationship of early concentrations of newly introduced trace substances and their eventual concentrations in various organisms, are also developed in this approach.  相似文献   

2.
Increasing centralization of the control of fisheries combined with increased knowledge of food-web relationships is likely to lead to attempts to maximize economic yield from entire food webs. With the exception of predator-prey systems, we lack any analysis of the nature of such yield-maximizing strategies. We use simple food-web models to investigate the nature of yield- or profit-maximizing exploitation of communities including two types of three-species food webs and a variety of six-species systems with as many as five trophic levels. These models show that, for most webs, relatively few species are harvested at equilibrium and that a significant fraction of the species is lost from the web. These extinctions occur for two reasons: (1) indirect effects due to harvesting of species that had positive effects on the extinct species, and (2) intentional eradication of species that are not themselves valuable, but have negative effects on more valuable species. In most cases, the yield-maximizing harvest involves taking only species from one trophic level. In no case was an unharvested top predator part of the yield-maximizing strategy. Analyses reveal that the existence of direct density dependence in consumers has a large effect on the nature of the optimal harvest policy, typically resulting in harvest of a larger number of species. A constraint that all species must be retained in the system (a "constraint of biodiversity conservation") usually increases the number of species and trophic levels harvested at the yield-maximizing policy. The reduction in total yield caused by such a constraint is modest for most food webs but can be over 90% in some cases. Independent harvesting of species within the web can also cause extinctions but is less likely to do so.  相似文献   

3.
多溴联苯醚的生物富集效应研究进展   总被引:3,自引:1,他引:2  
研究污染物的生物富集效应对于预测污染物在生物体内的含量、建立环境标准以及评估污染物的生态风险具有重要的意义.论文结合近年来国内外有关多溴联苯醚(PBDEs)的生物富集及其沿食物链(网)生物放大效应的研究文献,对PBDEs的生物富集效应进行了综述.文献计算的生物富集因子(BAFs)、生物-沉积物/土壤生物富集因子(BSAFs)和生物放大因子(BMFs)表明,生物对大多数PBDEs具有生物富集作用,且生物对PBDEs的富集能力与其生物进化等级及其营养级有关.文献计算的营养级放大因子(TMFs)表明,大多数PBDE单体可以在食物网上产生生物放大效应,但只有较少单体具有统计上的显著性.生物的生理生化参数、化合物本身的特性以及环境条件等因素影响了PBDEs在生物体内及食物链(网)上的富集与放大.  相似文献   

4.
砷是世界范围内危害最大的环境污染物之一,也是近海区域一种常见污染物。本文综述了近年来砷在海洋生态系统中累积、转化及传递的最新研究进展。海洋生物普遍具有较高含量的砷,这些砷主要为低毒性的有机砷形态。砷在许多海洋食物链/网中被生物放大,造成高营养级生物中的砷富集,可对生物与人类健康产生潜在危害;这与砷在淡水食物链/网中普遍被生物减小的现象形成鲜明对比。海洋鱼类和贝类等生物可将吸收的无机砷通过生物转化合成砷甜菜碱等有机砷形态,而有机砷比无机砷具有更高的食物链传递能力,可导致海洋鱼类富集更高浓度的砷。因此,砷在海洋生物中的有机形态可能有助于砷沿着海洋食物链/网富集,在某些情况下被生物放大。今后应该加强对不同砷形态在海洋食物链/网中传递及相应影响因素的研究,并通过室内模拟实验与野外调查相结合进行验证,从而加深对砷的生态毒理和生物地球化学作用的科学认识,对准确评估预测砷的生态风险和保障海洋生态安全有重要意义。  相似文献   

5.
Intraguild predation constitutes a widespread interaction occurring across different taxa, trophic positions and ecosystems, and its endogenous dynamical properties have been shown to affect the abundance and persistence of the involved populations as well as those connected with them within food webs. Although optimal foraging decisions displayed by predators are known to exert a stabilizing influence on the dynamics of intraguild predation systems, few is known about the corresponding influence of adaptive prey decisions in spite of its commonness in nature. In this study, we analyze the effect that adaptive antipredator behavior exerts on the stability and persistence of the populations involved in intraguild predation systems. Our results indicate that adaptive prey behavior in the form of inducible defenses act as a stabilizing mechanism and show that, in the same direction that adaptive foraging, enhances the parameter space in which species can coexist through promoting persistence of the IG-prey. At high levels of enrichment, the intraguild predation system exhibits unstable dynamics and zones of multiples attractors. In addition, we show that the equilibrium density of the IG-predator could be increased at intermediate values of defense effectiveness. Finally we conclude that adaptive prey behavior is an important mechanism leading to species coexistence in intraguild predation systems and consequently enhancing stability of food webs.  相似文献   

6.
In the present work we investigate whether the distribution of energy flows in ecosystems responds to criteria of trophic organization. We analyzed weighted and unweighted food webs estimating, for each node, trophic position (TP), Shannon's index of inflow diversity (H) and individual contribution to the whole average mutual information (AMI). Finally, we performed the same analysis on simulated webs that were constructed using the following criteria: (a) preserving topology and varying link strength; (b) modifying position of links and their intensities.  相似文献   

7.
The number of energy transformation levels in trophic webs is usually below five, but can be extended up to ten when parasites and hyper-parasites are included. Research on the structure and function of food webs is relevant to the complexity–stability–productivity debate. The aim of this theoretical analysis is to link energetic and connectional aspects of ecosystems with information theory. Updating an energetic model reported by Ricklefs [Ecologia, Zanichelli Editore S.p.A., Bologna, Italy, 1993, p. 896], our approach is integrated with a static analysis of food webs. The length of food webs is theoretically associated with the average ecological efficiency which can be empirically correlated with the effective connectance between species. Furthermore, the advantage of greater complexity when applied to a signalling network is qualitatively addressed.The overall efficiency of energy transformation into biomass throughout a trophic web, in an ecosystem with a given number of species, is the resultant of the various ecological efficiencies, η, at the transitions between the trophic levels. However, we propose that an increment in effective connectance and interspecies connectivity based on a superimposed signalling web may increase the η values, despite the fact that signalling per se has an energetic cost. According to this hypothesis, ecosystem stability would not be necessarily reduced by increasing the number of trophic levels, N, whenever stability in terms of persistence is improved by a cost-efficient regulatory network.  相似文献   

8.
Consequences of omnivory for trophic interactions on a salt marsh shrub   总被引:1,自引:0,他引:1  
Ho CK  Pennings SC 《Ecology》2008,89(6):1714-1722
Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a single trophic level. To better understand the complexity of real food webs, the variable feeding habits and feeding preferences of different omnivorous species must be taken into consideration.  相似文献   

9.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

10.
Daniel A. Fiscus   《Ecological modelling》2009,220(22):3070-3132
A preliminary study in comparative ecological network analysis was conducted to identify key assumptions and methodological challenges, test initial hypotheses and explore systemic and network structural characteristics for environmentally sustainable ecosystems. A nitrogen network for the U.S. beef supply chain – a small sub-network of the industrial food system analyzed as a pilot study – was constructed and compared to four non-human carbon and nitrogen trophic networks for the Chesapeake Bay and the Florida Everglades. These non-human food webs served as sustainable reference systems. Contrary to the main original hypothesis, the “window of vitality” and the number of network roles did not clearly differentiate between a human sub-network and the more complete non-human networks. The effective trophic level of humans (a partial estimate of trophic level based on the single food source of beef) was much higher (8.1) than any non-human species (maximum of 4.88). Network connectance, entropy, total dependency coefficients, trophic efficiencies and the ascendency to capacity ratio also indicated differences that serve as hypotheses for future tests on more comprehensive human food webs. The study elucidated important issues related to (1) the steady state assumption, which is more problematic for industrial human systems, (2) the absence or dearth of data on contributions of dead humans and human wastes to feed other species in an integrated food web, (3) the ambiguity of defining some industrial compartments as living versus non-living, and (4) challenges with constructing compartments and trophic transfers in industrial versus non-human food webs. The two main novel results are (1) the progress made toward adapting ecological network analysis (ENA) methodology for analysis of human food networks in industrial cultures and (2) characterizing the critical aspects of comparative ENA for understanding potential causes of the problems, and providing avenues for solutions, for environmental sustainability. Based on this work, construction and comparative network analysis of a more comprehensive industrial human food network seems warranted and likely to provide valuable insights for modifying structures of industrial food networks to be more like natural networks and more sustainable.  相似文献   

11.
Jennings  S.  Warr  K. J. 《Marine Biology》2003,142(6):1131-1140
Marine Biology - Nitrogen stable isotopes can be used to estimate the trophic position of consumers in food webs. However, the nitrogen stable isotope ratios (δ15N) of primary producers at the...  相似文献   

12.
The Greenland shark (Somniosus microcephalus) is the only shark species known to inhabit ice-covered seas in the North Atlantic, but remains a missing component in most studies of Arctic food webs. In the present study, stable isotopes (SIs) of nitrogen (δ15N) and carbon (δ13C) and fatty acids (FAs) were analyzed to identify the role of Greenland sharks (sampled during June 2008–2009) in Kongsfjorden, a productive fjord on the west coast of Svalbard, Norway (~79ºN, 12–13ºE). The Greenland shark fed at a high trophic position (4.8) based on δ15N values, and δ13C confirmed that most (70 %) of their carbon was derived from phytoplankton-based food chains, which is consistent with a heavy reliance on pelagic teleosts and seals. Greenland sharks from Kongsfjorden had fatty acid profiles in both muscle and plasma (e.g., low 20:1n-9, high 22:5n-3) that suggested a low portion of Greenland halibut (Reinhardtius hippoglossoides) and high proportion of gadoids and seals in their diet compared to Greenland sharks sampled in Cumberland Sound, Canada, during April 2008, which were previously shown to derive much of their energy from Greenland halibut. The high proportions of seal fatty acids in both slow- (muscle) and fast- (plasma) turnover tissues indicate that trophic interactions between Greenland sharks and seals in Kongsfjorden are a common occurrence. Results from the present study suggest that Greenland sharks likely play a unique and significant role in Arctic marine food webs as a top predator of fishes and marine mammals.  相似文献   

13.
We analysed changes in the ecological roles of species, trophic structure and ecosystem functioning using four standardized mass-balance models of the South Catalan Sea (North-western Mediterranean). Models represented the ecosystem during the late 1970s, mid 1990s, early 2000s, and a simulated no-fishing scenario. The underlying hypothesis was that ecosystem models should quantitatively capture the increasing exploitation in the ecosystem from the 1970s to 2000s, as well as differences between the exploited and non-exploited scenarios. Biomass showed a general decrease, while there was an increase in biomass at lower trophic levels (TL) from the 1970s to 2000s. The efficiency of energy transfer (TE) from lower to higher TLs significantly increased with time. The ecosystem during the 1990s showed higher biomass and flows than during the 1970s and 2000s due to an increase in small pelagic fish biomass (especially sardines). Exploited food webs also showed similarities in terms of general structure and functioning due to high intensity of fishing already in the 1970s. This intensity was highlighted with low trophic levels in the catch, high consumption of production by fisheries, medium to high primary production required to sustain the catches and high losses in secondary production due to fishing. Significant differences on ecosystem structure and functioning were highlighted between the exploited and no-fishing scenarios. Biomass of higher TLs increased under the no-fishing scenario and the mean trophic level of the community and the fish/invertebrate biomass ratios were substantially lower in exploited food webs. The efficiency of energy transfer (TE) from lower to higher TLs was lower under the no-fishing scenario, and it showed a continuous decrease with increasing TL. Marine mammals, large hake, anglerfish and large pelagic fish were identified as keystone species of the ecosystem when there was no fishing, while their ecological importance notably decreased under the exploited periods. On the contrary, the importance of small-sized organisms such as benthic invertebrates and small pelagic fish was higher in exploited food webs.  相似文献   

14.
Abstract:  Habitat fragmentation is the transformation of once-extensive landscapes into smaller, isolated remnants surrounded by new types of habitat. There is ample evidence of impoverished biodiversity as a consequence of habitat fragmentation, but its most profound effects may actually result from functional changes in ecological processes such as trophic interactions. We studied the trophic processes of herbivory and parasitism in insect-plant food webs composed of hundreds of species in a fragmented woodland landscape. We recorded all plant species, collected mined leaves, and reared leafminers and parasitoids from 19 woodland remnants. Herbivory and parasitism rates were then analyzed in relation to woodland size and edge or interior location. Herbivory by leaf-mining insects and their overall parasitism rates decreased as woodland remnants became smaller. For each remnant the intensity of both processes differed between edge and interior. Our results provide novel evidence of the magnitude of habitat fragmentation effects, showing they can be so pervasive as to affect trophic processes of highly complex food webs and suggesting a response associated with trophic specialization of the involved organisms as much as with their trophic level.  相似文献   

15.
Stable isotope ratios (typically of carbon and nitrogen) provide one representation of an organism's trophic niche and are widely used to examine aspects of food web structure. Yet stable isotopes have not been applied to quantitatively characterize community-wide aspects of trophic structure (i.e., at the level of an entire food web). We propose quantitative metrics that can be used to this end, drawing on similar approaches from ecomorphology research. For example, the convex hull area occupied by species in delta13C-delta15N niche space is a representation of the total extent of trophic diversity within a food web, whereas mean nearest neighbor distance among all species pairs is a measure of species packing within trophic niche space. To facilitate discussion of opportunities and limitations of the metrics, we provide empirical and conceptual examples drawn from Bahamian tidal creek food webs. These examples illustrate how this methodology can be used to quantify trophic diversity and trophic redundancy in food webs, as well as to link individual species to characteristics of the food web in which they are embedded. Building from extensive applications of stable isotope ratios by ecologists, the community-wide metrics may provide a new perspective on food web structure, function, and dynamics.  相似文献   

16.
Stallings CD 《Ecology》2008,89(8):2090-2095
The more ecologists examine the role of trait-mediated indirect interactions (TMIIs), especially in regulating predator-prey interactions, the more we recognize their fundamental role in structuring food webs. However, most empirical evidence for TMIIs comes from studies that are either conducted in laboratory or mesocosm venues or are restricted to simple food webs involving lower trophic-level animals. Here, I quantified the direct and indirect effects of interactions between high-level vertebrate predators on their vertebrate prey using a field experiment. Specifically, I tested how varying densities of a large-bodied, top predator (Nassau grouper; Epinephelus striatus) affected persistence, growth, and behavior of two smaller-bodied, intermediate predators (coney and graysby groupers; Cephalopholis fulva and C. cruentata) on 20 isolated patch reefs in the Bahamas. Large-bodied groupers are capable of consuming their smaller-bodied counterparts, and previous observational studies have indicated that local abundances of these groupers are negatively correlated. I measured the effects of interactions among groupers on lower trophic-level prey by quantifying recruitment of coral-reef fishes to the reefs. The field experiment demonstrated a strong trophic cascade that was entirely mediated by modified behavior of the intermediate predators. These results indicate that indirect, nonlethal interactions in natural systems can have strong cascading effects even at high trophic levels and in high-diversity food webs. Incorporating the complexity of such indirect effects into fisheries management may improve the sustainability of fished populations and strengthen marine conservation efforts; however these results also indicate that the effects of fishing are complex and difficult to predict.  相似文献   

17.
Butler JL  Gotelli NJ  Ellison AM 《Ecology》2008,89(4):898-904
Linkages between detritus-based ("brown") food webs and producer-based ("green") food webs are critical components of ecosystem functionality, but these linkages are hard to study because it is difficult to measure release of nutrients by brown food webs and their subsequent uptake by plants. In a three-month greenhouse experiment, we examined how the detritus-based food web inhabiting rain-filled leaves of the pitcher plant Sarracenia purpurea affects nitrogen transformation and its subsequent uptake by the plant itself. We used isotopically enriched prey (detritus) and soluble inorganic nitrogen, and manipulated food web structure to determine whether the presence of a complete brown web influences uptake efficiency of nitrogen by the plant. Uptake efficiency of soluble inorganic nitrogen was greater than that of nitrogen derived from mineralized prey. Contrary to expectation, there was no effect of the presence in the food web of macroinvertebrates on uptake efficiency of either form of nitrogen. Further, uptake efficiency of prey-derived nitrogen did not differ significantly among S. purpurea and two congeneric species (S. flava and S. alata) that lack associated food webs. Although upper trophic levels of this brown food web actively process detritus, it is the activity of the microbial component of this web that ultimately determines nitrogen availability for S. purpurea.  相似文献   

18.
The path of a particle through an ecosystem is modelled as a Markov chain. For a given flow network, powers of the transition matrix are used to calculate the distribution of the particles over the network after each transition. The method may be applied for the definition and calculation of trophic levels in food webs. The algorithm yields the trophic level distribution of species, the species composition of trophic levels, and the path length distribution of output flows. In addition, the network can be described as a linear chain, with the throughflows at each step identified. Data from several ecosystems are analyzed by the method, showing that surprising insights may result.  相似文献   

19.
Zeug SC  Winemiller KO 《Ecology》2008,89(6):1733-1743
Algal carbon has been increasingly recognized as the primary carbon source supporting large-river food webs; however, many of the studies that support this contention have focused on lotic main channels during low-flow periods. The flow variability and habitat-heterogeneity characteristic of these systems has the potential to significantly influence food web structure and must be integrated into models of large-river webs. We used stable-isotope analysis and IsoSource software to model terrestrial and algal sources of organic carbon supporting consumer taxa in the main channel and oxbow lakes of the Brazos River, Texas, USA, during a period of frequent hydrologic connectivity between these habitat types. Standardized sampling was conducted monthly to collect production sources and consumer species used in isotopic analysis. Predictability of hydrologic connections between habitat types was based on the previous 30 years of flow data. IsoSource mixing models identified terrestrial C3 macrophytes (riparian origin) as the primary carbon source supporting virtually all consumers in the main channel and most consumers in oxbow lakes. Small-bodied consumers (<100 mm) in oxbow lakes assimilated large fractions of algal carbon whereas this pattern was not apparent in the main channel. Estimates of detritivore trophic positions based on delta15N values indicated that terrestrial material was likely assimilated via invertebrates rather than directly from detritus. High flows in the river channel influenced algal standing stock, and differences in the importance of terrestrial and algal production sources among consumers in channel vs. oxbow habitats were associated with patterns of flooding. The importance of terrestrial material contradicts the findings of recent studies of large-river food webs that have emphasized the importance of algal carbon and indicates that there can be significant spatial, temporal, and taxonomic variation in carbon sources supporting consumers in large rivers.  相似文献   

20.
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable‐isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic‐niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic‐niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic‐niche widths in degraded forest. Species with narrow trophic‐niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species’ trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. Flexibilidad Trófica y la Persistencia de Aves de Sotobosque en un Bosque Lluvioso Talado Intensivamente  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号