首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

2.
游离氨对城市生活垃圾渗滤液短程硝化的影响   总被引:12,自引:5,他引:7  
吴莉娜  彭永臻  王淑莹  张树军 《环境科学》2008,29(12):3428-3432
为了考察游离氨(free ammonia,FA)对高氮城市生活垃圾渗滤液短程硝化的影响,采用“两级UASB-缺氧-好氧系统”处理实际城市生活垃圾渗滤液.首先在UASB1中实现同时反硝化与产甲烷反应,COD在UASB2中进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH+4-N彻底硝化.试验共进行79 d,经历3个阶段,即稳定短程硝化(40 d)、短程硝化破坏(19 d)、短程硝化恢复(20 d).结果表明,适当的游离氨浓度(40~70 mg·L-1)可实现稳定的短程硝化,如在阶段1中亚硝态氮积累率为97%,氨氮的去除率为99%.但游离氨浓度在160 mg·L-1左右会抑制全部的硝化反应.在阶段3中,通过稀释原水降低了游离氨浓度,在短时间内就恢复了短程硝化.可见,游离氨是实现和维持城市生活垃圾渗滤液短程硝化的重要影响因素.  相似文献   

3.
城市生活污水SNAD工艺的启动研究   总被引:3,自引:0,他引:3  
采用SBR反应器,以城市生活污水为原水,进行同步亚硝化、厌氧氨氧化、反硝化(SNAD)工艺的启动研究.首先接种厌氧氨氧化(anammox)颗粒污泥,在高曝气量下(500L/h)培养得到亚硝化颗粒污泥,然后再次接种anammox颗粒污泥,在低曝气量下(40L/h)培养得到SNAD颗粒污泥.在亚硝化稳定期,氨氮平均去除率达到94%,亚硝态氮平均积累率达到95%.在SNAD稳定期,总氮平均去除率为85%.批试实验结果表明,亚硝化稳定期亚硝化颗粒污泥的好氧氨氮和亚硝态氮氧化活性分别为为0.234和0kgN/(kgVSS×d).SNAD颗粒污泥的厌氧氨氧化总氮去除、亚硝态氮反硝化、好氧氨氮氧化、好氧亚硝态氮氧化活性分别为0.158、0.104、0.281、0kg/(kgVSS×d),其中硝态氮反硝化活性在0~120min和120~360min内分别为0.061和0.104kg/(kgVSS×d).扫描电镜显示,SNAD颗粒污泥表面以短杆状菌和球状菌为主,可能为好氧氨氧化菌(AOB)和反硝化菌,颗粒污泥内部以火山口状的细菌为主,可能为anammox菌.  相似文献   

4.
游离氨对硝化菌活性的抑制及可逆性影响   总被引:11,自引:0,他引:11  
为考察游离氨(FA)对硝化菌(氨氧化菌AOB和亚硝酸盐氧化菌NOB)活性的抑制影响,采用SBR反应器,基于FA与过程控制协同作用在实现短程硝化的基础上,考察了不同FA浓度(1.0,5.3,16.6,13.4,9.9,5.2,1.0mg/L)梯度下,FA对AOB和NOB活性的抑制作用及可逆性.结果表明,当FA浓度达到13.4mg/L时,系统内亚硝态氮积累率(NiAR)逐渐增加,硝态氮积累率(NaAR)逐渐减小,且NiAR/ NaAR>1时,系统实现了稳定短程硝化.在此FA浓度条件下,FA对AOB和NOB活性均产生一定的抑制作用,但相对于AOB,NOB对FA的抑制作用更加敏感.当AOB活性被短暂抑制后,其活性又迅速恢复;而NOB活性被完全抑制.此后当FA浓度又逐渐降至1.0mg/L时,AOB活性始终维持较高水平,而NOB活性尚未恢复.也即是说,在本试验控制的FA浓度条件下,FA对AOB活性的抑制作用是可逆的,而对NOB活性的抑制作用不可逆.  相似文献   

5.
针对煤气化废水现有处理工艺存在的污染物去除效果差、运行成本高等问题,文章提出了短程反硝化耦合厌氧氨氧化的处理工艺。将部分原水和经硝化阶段处理的原水按一定比例混合后进入短程反硝化阶段,充分利用原水中的COD作为短程反硝化碳源获得富含氨氮和亚硝氮的出水,保证了后续厌氧氨氧化自养脱氮过程能够正常进行。通过控制反应器温度在15~25℃、pH在8.0~8.5和少量有机碳源投加的措施实现了对短程反硝化过程的稳定控制,亚硝氮积累率高达85.7%。该实验最终出水总氮去除率可达87.0%,出水COD低于28.0 mg/L,氨氮低于4.8 mg/L,证明了短程反硝化耦合厌氧氨氧化工艺的可行性和高效性。同时,该工艺曝气能耗低、有机碳源和碱度消耗少,为厌氧氨氧化技术的应用提供了新的思路。  相似文献   

6.
采用单级UASB-SBR生化系统处理实际垃圾渗滤液,主要考察了常、低温条件下,该生化系统短程生物脱氮的长期稳定性,同时研究了SBR内短程硝化的实现机理及微生物种群特性.598d试验结果表明:单级UASB-SBR生化系统对渗滤液内COD,NH4+-N和TN的去除率分别为92.0%,99.2%和98.0%以上,实现渗滤液内有机物和氮的深度去除.经过116d运行,SBR系统实现了短程硝化,亚硝积累率(NAR)达到90%以上,此后稳定运行,成功跨越2个冬季,15℃以下共计171d,最低温度为10.2℃.游离氨(FA)和过程控制的协同作用是实现与维持SBR 内短程硝化的决定因素.荧光原位杂交(FISH)技术检测表明:氨氧化菌(AOB)已经成为SBR硝化菌群中的优势菌属.扫描电子显微镜(SEM)检测表明:AOB菌属以活椭球状亚硝化球菌属(Nitrosococcus)和杆状亚硝化单胞菌属(Nitrosomonas)为主.  相似文献   

7.
SBR法常、低温下生活污水短程硝化的实现及特性   总被引:9,自引:1,他引:8       下载免费PDF全文
采用序批式反应器(SBR)处理实际生活污水,通过实时控制好氧曝气时间,在常温下快速实现短程硝化,并在低温下长期维持稳定的短程硝化.结果表明,随着温度逐渐降低,比氨氧化速率略微减缓,27℃的平均比氨氧化速率是13℃时的1.68倍,但亚硝化积累率始终维持在90%以上,该温度区间内氨氧化反应的温度系数为1.051.通过荧光原位杂交(FISH)技术对低温下维持稳定短程硝化的污泥进行种群分析发现,实时控制策略为氨氧化菌(AOB)成为优势硝化菌群创造了有利条件,AOB的相对百分含量达到8%~9%,而亚硝酸盐氧化菌(NOB)逐渐被淘洗出反应器.在低温下要实现短程硝化,可首先在常温下利用好氧曝气时间实时控制实现亚硝态氮的积累和AOB的优势生长,然后通过逐渐降温使AOB适应在低温下生长.  相似文献   

8.
生活垃圾焚烧厂渗沥液是一种含高氨氮高有机物浓度的难处理废水,目前渗沥液生物脱氮多采用多级硝化反硝化处理工艺,存在能耗大、效率低等不足。以厌氧氨氧化技术为核心,构建连续流厌氧消化-短程硝化-厌氧氨氧化三段式工艺,分析垃圾焚烧厂渗沥液的生物脱氮效果、有机物迁移转化规律、功能微生物活性及组成变化。结果表明:在进水ρ(NH4+-N)为900~1800 mg/L,ρ(COD)为3000~20000 mg/L时,系统处理效果良好,稳定运行期间总无机氮和COD去除率分别为85%和77%。其中厌氧消化段可去除约45%的COD,短程硝化段NO2--N积累率保持在97%以上,厌氧氨氧化段稳定运行期间总无机氮去除率约为85%,系统内也存在一定程度反硝化反应。接入渗沥液后,自养脱氮体系中功能微生物氨氧化菌(AOB)和厌氧氨氧化菌(Anammox)的活性均有不同程度的下降,采用宏基因组学结合16S rDNA高通量测序技术对比分析微生物的群落和功能组成变化,发现渗沥液中高浓度的有机物使短程硝化段和厌氧氨氧化段内异养反硝化菌相对丰度上升,Anammox受到难降解有机物抑制,其中Candidatus_Kuenenia菌属适应性较强,在驯化后仍然可以维持厌氧氨氧化系统较高的脱氮效果。  相似文献   

9.
高远  程军  张亮  彭永臻 《环境工程》2019,37(1):35-40
高氨氮短程硝化厌氧氨氧化一体化(PN/A)工艺的稳定性受亚硝态氮影响显著。考察了高氨氮PN/A工艺受亚硝态氮短期抑制后,系统脱氮性能快速恢复的策略。稳定运行的PN/A污泥在ρ(NO~-_2-N)=200 mg/L条件下抑制2 h后,首先考察厌氧氨氧化菌在不同初始亚硝态氮浓度下的活性变化。此外,考察了受抑制后的PN/A工艺在不同DO浓度(0.05~1 mg/L)下的脱氮性能,结果表明:当NO~-_2-N浓度降低至50 mg/L以下时,厌氧氨氧化菌才明显表现出活性;受抑制后的PN/A工艺中,厌氧氨氧化菌对DO敏感度增加,恢复时系统的DO宜低于正常运行时浓度。综上所述,受NO~-_2-N抑制的PN/A工艺要恢复脱氮性能,宜降低亚硝态氮浓度同时控制DO浓度。在连续运行的PN/A反应器(200 L),诱发NO~-_2-N浓度提高到160 mg/L时,TN去除负荷从0.57下降至0.2 kg/(m~3·d)。通过合理控制DO和NO~-_2-N浓度,系统负荷在30 d内即可恢复至原有水平,验证了以上恢复策略的可行性。  相似文献   

10.
低溶解氧下SBR内短程硝化影响因素试验研究   总被引:5,自引:1,他引:4  
为了明确低溶解氧下短程硝化的其它控制因素,文章采用序批式反应器(SBR)系统研究了低溶解氧下实现短程硝化影响因素的控制范围。试验结果表明:SBR内较高的游离氨浓度(0.50~20.73 mg/L)对亚硝酸的积累起到一定促进作用;实现低溶解氧下短程硝化的温度和泥龄范围较大,在温度为21~30℃、泥龄为15~40 d的范围内都可以实现稳定的短程硝化,实验过程中亚硝酸积累率一直维持在80%以上;有机物的存在对氨氧化速率影响不大,但高有机物浓度(COD为900 mg/L)下,SBR内发生了高粘性膨胀。  相似文献   

11.
UASB1-A/O-UASB2深度处理垃圾渗滤液   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统垃圾渗滤液生物处理TN去除率低、投加碳源成本高的问题,采用UASB1-A/O-UASB2(单级上流式厌氧污泥床+缺氧/好氧+后置上流式厌氧污泥床)工艺处理实际垃圾渗滤液,实现NH4+-N和TN的同步深度脱除,并且定量解析了A/O反应器实现并维持稳定短程硝化的影响因素. 结果表明:以V(垃圾渗滤液)∶V(生活污水)为1∶5的混合液作为进水,其ρ(CODCr)、ρ(TN)和ρ(NH4+-N)分别为1 700~1 800、660~700和650~680 mg/L,最终出水CODCr、TN和NH4+-N去除率均在95%以上,出水ρ(TN)为38 mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. 在好氧反应器中,FA(游离氨)与FNA(游离亚硝酸)对NOB(硝化细菌)的联合抑制作用是实现NO2--N积累率稳定在80%以上的主要原因,而产生的NO2--N和NO3--N可在UASB2中以难降解的有机物为碳源,通过反硝化途径被去除. 研究显示,组合系统可实现对TN的深度去除.   相似文献   

12.
碱度对沸石序批式反应器亚硝化的影响   总被引:1,自引:1,他引:0  
本研究采用沸石序批式反应器(ZSBR)在常温(25℃±1℃)下实现快速稳定的亚硝化,亚硝酸盐氮积累率维持在90.0%以上,并且考察了在进水氨氮500 mg·L~(-1)时,4个不同碱度(以CaCO_3计)对ZSBR亚硝化的影响.结果表明,ZSBR实现快速亚硝化的关键是游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制作用远大于其对氨氧化菌(AOB)的抑制作用,并且经此过程转化后的含氨氮的废水,可以作为厌氧氨氧化的进水,进一步脱除水中的氨氮与总氮,当系统投加碱度(以CaCO_3计)为2 500mg·L~(-1)时,ZSBR亚硝化效果最好,平均氨氮转化率为66.7%,平均亚硝酸盐氮积累率为98.1%,平均亚硝酸盐氮产率为0.74 kg·(m~3·d)~(-1).高通量测序分析表明ZSBR长时间运行后微生物群落发生显著变化,AOB得到富集,NOB在FA的抑制作用下不断被淘洗出反应器.  相似文献   

13.
SBR工艺短程硝化快速启动条件的优化   总被引:6,自引:1,他引:5       下载免费PDF全文
以低COD/TN的实际生活污水为研究对象,采用SBR反应器,对短程硝化的启动条件进行了优化.结果表明,温度30℃、溶解氧(DO) 2.0mg/L、污泥龄为7d时,系统在实时控制条件下运行32周期,可以成功启动短程硝化.在总氮(TN)去除率>95%的情况下,亚硝酸盐积累率(NO2--N /NOx--N)>90%,随后的64d,温度恢复到常温(20~24℃),系统仍稳定运行.荧光原位杂交技术(FISH)检测表明,经过32个周期种群优化,污泥中氨氧化菌(AOB)的含量提高了38.9%,亚硝酸盐氧化菌(NOB)的含量降低了53.2%.在线动态控制DO浓度和曝气时间可以逐渐淘汰系统中的NOB,从而获得稳定的短程硝化,提高系统脱氮效率.  相似文献   

14.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

15.
Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.  相似文献   

16.
羟胺抑制协同pH调控对人工快渗系统短程硝化的影响   总被引:4,自引:0,他引:4  
陈佼  张建强  文海燕  张青  杨旭  李佳 《环境科学学报》2016,36(10):3728-3735
针对人工快渗系统(CRI)总氮去除率低的问题,研究了羟胺抑制协同pH调控对人工快渗系统实现由全程硝化向短程硝化转化的可行性,探讨了其对系统内氮素污染物迁移转化和硝化功能菌空间分布及活性的影响.结果表明,0.5 mmol·L~(-1)羟胺连续添加13 d后可实现CRI系统短程硝化的快速启动,氨氮去除率、亚硝氮积累率分别为91.1%、77.9%,经16 d不添加羟胺运行后氨氮去除率、亚硝氮积累率分别降低3.9%、9.8%,此时调控进水pH至8.4,氨氮去除率和亚硝氮积累率均超过90%,CRI系统短程硝化效果显著且稳定性较高.羟胺对硝化菌具有选择性抑制,对AOB和NOB产生明显抑制的浓度分别为0.7、0.5 mmol·L~(-1),羟胺浓度为1.0 mmol·L~(-1)时AOB和NOB活性均被严重抑制且解抑较难;pH调控对短程硝化的影响主要与游离氨(FA)的抑制作用有关,对AOB和NOB产生明显抑制的FA浓度分别为26.5、5.6 mg·L~(-1),NOB比AOB对FA的敏感性更高.  相似文献   

17.
生活污水常温处理系统中AOB与NOB竞争优势的调控   总被引:10,自引:4,他引:6  
曾薇  张悦  李磊  彭永臻 《环境科学》2009,30(5):1430-1436
常温(19℃±1℃)条件下,采用SBR工艺处理低碳氮比(C/N)实际生活污水,研究氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)竞争优势的调控,在接种全程硝化污泥的系统中使AOB成为优势菌群,启动并维持常温短程硝化.通过控制曝气量为40 L/h使系统溶解氧处于较低水平(DOaverage<1.0 mg/L),同时结合好氧硝化时间的优化控制,即在pH值“氨谷"点前及时停止曝气的短周期定时控制,强化AOB的竞争优势.待AOB的竞争优势初步形成后(亚硝酸盐积累率NO-2-N/NO-x-N达到50%),每周期曝气时间随着NO-2-N/NO-x-N的提高由3 h逐步延长至4 h、 5 h,从而提高NH+4-N去除率,进一步增强AOB在系统中的竞争优势,短程硝化成功启动,NO-2-N/NO-x-N稳定在95%以上.FISH检测结果表明AOB大约占总菌群的9.97%.在线控制好氧硝化时间可以很好地维持短程硝化效果,NH+4-N去除率达到97%以上.研究还表明,对于全程硝化污泥常温下如果不限制溶解氧,单纯依靠短周期定时控制无法使AOB成为优势硝化菌群.  相似文献   

18.
以低碳氮比的生活污水为研究对象,采用SBR反应器,通过减少好氧阶段的搅拌时间快速启动短程硝化脱氮过程,对典型运行周期内氮去除规律进行研究,并从微生物角度进一步验证了短程硝化脱氮工艺的实现。结果表明:减少50%好氧搅拌时间后,亚硝酸盐积累率(NAR)由36.05%增加到54.06%,好氧阶段停止搅拌后,NAR被提高到90.17%,并且以此状态持续稳定运行;典型运行周期内SBR具有良好的NH4+-N去除效果和较高的NAR,实测NH4+-N去除率达89.46%,出水NAR达89.13%;实时荧光定量PCR技术(q-PCR)检测表明,经过140 d的种群优化,污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)含量分别占总菌数的70.3%和2.1%,从分子生物学角度验证了短程硝化工艺的实现。  相似文献   

19.
探究了4种低温水平下基于亚硝化的全程自养脱氮(CANON)型序批式生物膜反应器(SBBR)的运行效果及其氮素转化机制.结果表明,当CANON型SBBR在不同的低温水平下稳定运行后,其脱氮微生物优势菌群发生了不同程度的变化,随之改变了系统的氮素转化途径及其脱氮性能.当温度>15℃时,SBBR中AOB和anammox菌的丰度与活性未受到明显抑制,CANON作用始终是系统脱氮的主要途径,SBBR对TN的平均去除率亦较为理想;而当温度<15℃时,anammox菌的丰度与活性在10,5℃下分别出现不同程度的降低,进而改变了SBBR的氮素转化途径,使其脱氮性能出现不同程度的恶化.在10℃时,NOB的增殖及其活性的提高使硝化/反硝化作用取代CANON作用成为SBBR脱氮的主要途径,此时系统对TN的去除率骤降至(16.87±4.79)%;在5℃时,反硝化过程中第1步还原反应的停滞与反硝化菌对NO2--N利用率的提高使SBBR中氮素的去除依赖于CANON作用和短程硝化/反硝化作用的协同,系统对TN的去除率为(54.83±3.68)%.  相似文献   

20.
短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液   总被引:4,自引:3,他引:1       下载免费PDF全文
为解决垃圾渗滤液中高浓度污染物对微生物的毒性抑制、生物处理出水有机物或氮不达标及投加碳源成本高的问题,采用UASB(上流式厌氧污泥床)-A/O(缺氧/好氧)反应器-ANAMMOXR(厌氧氨氧化反应器)工艺,通过短程硝化-ANAMMOX(厌氧氨氧化)深度处理实际垃圾渗滤液与生活污水混和液(体积比为1∶10),其ρ(CODCr)、ρ(NH4+-N)和ρ(TN)分别为(750±30)(290±10)和(300±10)mg/L,试验共进行90 d. 结果表明:CODCr、NH4+-N和TN的去除率分别为88%±1%、95%±1%和91%±1%,最终出水质量浓度分别为(67±5)(15±2)和(35±5)mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. A/O反应器中的ρ(FA)(FA为游离氨)在0.21~1.38 mg/L之间,可抑制NOB(硝酸细菌),使AOB(氨氧化细菌)成为优势菌种,从而实现并维持NO2--N积累率(70%~96%)较高的短程硝化,继而在ANAMMOXR中通过ANAMMOX去除残余NH4+-N和NO2--N,实现系统对氮的深度去除.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号