首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
为探索在强制通风条件下,炼钢厂工作场所煤气泄漏后在车间内的扩散规律和影响范围,以某炼钢厂为例,建立煤气泄漏扩散数学模型;对其离散格式、边界条件设定和气体性质定义;采用计算流体力学方法模拟煤气泄漏后CO的浓度变化过程以及不同监测点的CO浓度变化分布规律。模拟结果显示:在相同风压下,随着通风时间的增加,CO在呼气带的浓度逐渐降低;随着通风压力的增加,CO在呼气带的浓度降低得更快,特别是在泄漏停止后,通风压力的增加,使空气对流加快,新空气的进入使CO得到迅速的稀释;当通风压力从2 MPa到6 MPa递增时,距离地面1.5 m处6个水平监测点上CO浓度随时间变化无数量级差异;通过0.4 MPa和0.6 MPa压力的对比分析可以看出,0.6MPa通风压力具有明显的趋势变化。  相似文献   

2.
为了探究密闭空间内通风对气体泄漏扩散过程的影响,基于FLACS模拟软件,对密闭空间内CO2泄漏及排散过程进行模拟,探讨入风口、出风口相对位置对泄漏及排散过程的影响。研究结果表明:入风口高度与出风口高度越高,越有利于CO2气体排散,应急排散时间更短;入风口位于屋顶时,CO2排散效果最好。  相似文献   

3.
通过室外水幕抑制阻挡CO2扩散试验分析了CO2泄漏时的体积分数分布,探讨了水幕压力、水幕到泄漏源距离、泄漏源高度对水幕抑制阻挡重气云扩散能力的影响,得到了不同初始条件下的水幕稀释效率.结果表明:水幕压力越大,抑制效果越好;泄漏源到水幕的距离较近时,CO2容易穿透水幕;泄漏高度低于水幕高度时,泄漏高度越高,水幕抑制效果越差.在此基础上得出了扇形水幕抑制阻挡重气云扩散机理,即向上喷射的扇形水幕是通过垂直向上的机械趋散作用、空气卷吸等将重气向上驱散,从而达到抑制阻挡非水溶性重气的目的.  相似文献   

4.
为了掌握输气管道在城市综合管廊舱室泄漏扩散的基本规律,采用FLUENT软件,针对管廊正常通风—泄漏报警—事故通风—警报解除的全过程进行动态分析。首先在正常通风速度建立的稳态风场中,模拟天然气在不同管输压力下发生小孔泄漏后的报警时间,根据首个响应的报警器的位置判断泄漏源位置。结果表明,当泄漏孔径为20 mm,通风速度为1.92 m/s,且泄漏源处于2个报警器中间时,管输压力为200,400,800 kPa时对应的报警时间分别为10.4,6.7,4.5 s。事故通风速度下,对不同管输压力的天然气扩散进行分析,当天然气朝逆风侧扩散时,随动量逐渐减小而到达不同的边界坐标。同时,环境大气压的降低不仅会缩短报警器的首次报警时间,还能延长总扩散距离。预测所得的天然气爆炸上下限浓度区移动速度有助于动态了解处于爆炸上下限浓度之间气体的实时位置。解除报警时间与进风口风速呈近似线性关系,可为现场救援队伍选择经济通风量提供理论指导。  相似文献   

5.
为实现综合管廊燃气泄漏扩散的精确高效模拟分析,进而为综合管廊燃气泄漏事故的安全防控提供技术支撑,利用OpenFOAM对城市地下综合管廊舱内燃气泄漏扩散进行数值建模计算,研究分析通风受限空间内的燃气泄漏扩散规律,并结合对应急响应时间的分析验证了通风策略的有效性。研究结果表明:气体射流作用与浮升力作用是影响综合管廊燃气泄漏扩散浓度分布的重要因素,采取合理的通风措施可有效加速燃气的流动与扩散,缩短燃气泄漏报警响应时间,有利于燃气泄漏事故应急决策与应急救援的快速实施。  相似文献   

6.
基于相似性原理,在不同坡度(0°、20°、30°、45°)及不同地面粗糙度(木质地面、土质地面)条件下进行了小尺寸的CO2泄漏试验,研究坡度和地面粗糙度对CO2泄漏扩散的影响,为全尺寸现场CO2泄漏试验提供参考。结果表明:坡度的存在对CO2扩散产生了较为明显的影响,坡度越大,斜坡上体积分数梯度越大,坡度小于20°时,对CO2扩散影响几乎无影响,坡度大于30°时,影响开始凸显;与无坡度的平面扩散相比,斜坡下方出现明显的CO2聚集区域,坡度越大,聚集现象越明显,体积分数分布越平均;地面粗糙度的增加使整体CO2体积分数有明显的上升,泄漏口附近(0.25 m)体积分数上升最为明显,整个泄漏场浓度分布更加平均,浓度梯度更小;此外,地面粗糙度的增加一定程度上抑制了泄漏过程的卷吸效应。  相似文献   

7.
氢能是有发展前景的新型能源之一,氢气的安全储存是氢能应用必须解决的问题。本文建立了基于大容量金属储氢装置的室内氢气泄漏扩散模型,利用计算流体力学软件FLUENT,对室内储氢罐的泄漏扩散过程进行数值模拟,得到了氢气泄漏扩散的速度分布、浓度分布。分析数值模拟结果,得出在该模拟条件下,氢气泄漏时的流动状态为射流湍流;泄漏后上浮扩散,空间密闭时积累于室顶;通风条件下大部分区域的氢气浓度仍然高于安全限值。通过数值模拟,总结出氢气在室内环境下的泄漏扩散规律,可为氢气泄漏事故的处理消防安全设置提供依据。  相似文献   

8.
为了分析管输天然气在不同介质中泄漏问题,基于流体力学和多孔介质理论,通过CFD软件建立了管道泄漏的三维仿真模型对该问题进行分析。首先,针对架空管道和埋地管道分别建立了泄漏扩散模拟模型和多孔介质的埋地管道模型;其次,对不同压力下的天然气管道进行模拟计算;最后,通过甲烷体积分数和压力分布等参数对管道泄漏现象进行分析。仿真实验结果表明:相同压力下,在空气中泄漏的天然气在进入空气时会形成射流,在同一水平面上沿射流中心点向外甲烷浓度呈抛物线型分布;在土壤中泄漏的天然气会在泄漏口处形成蘑菇云状分布。  相似文献   

9.
为分析运输过程中液氨罐车在隧道内泄漏的危险性,利用Fire Dynamics Simulator(FDS)软件模拟氨气在隧道内的扩散过程,发展了隧道内氨气泄漏扩散体积分数分布特征经验公式。采用大涡模拟处理湍流流动,以便兼顾计算精度和计算效率。考虑储罐车发生泄漏后停止不动,液氨在泄漏瞬间转变为气体,模拟在连续点源泄漏情况下的氨气射流及扩散过程。结果表明,高体积分数危险区域主要集中在隧道顶棚附近,更高截面的体积分数处于爆炸极限的区域更长。泄漏源与洞口之间的隧道中段区域的体积分数梯度相对两端较小,此中段区域也是人员安全高度截面最高氨气体积分数发生位置。最大泄漏量情况下氨气在沿纵向扩散过程中平均运动速率保持在0.63~1.06 m/s,扩散速率随纵向距离增加而降低。顶棚氨气体积分数升高程度随纵向距离增加呈幂函数降低,体积分数沿纵向衰减规律适用于其他泄漏量的情况。后期工作可考虑开展缩尺试验,并同时考虑通风条件等因素对氨气泄漏扩散的影响研究。发展的氨气在隧道内泄漏扩散的体积分数分布经验公式可为氨气事故后果评价、应急处置等工作提供参考。  相似文献   

10.
分析城市加气站液化石油气(Liquefied Petroleum Gas,LPG)埋地储罐泄漏后LPG在砂土介质中渗流扩散的物理过程及特点,确定埋地储罐不同位置泄漏出现的物质流动状态,分析LPG在砂中传输过程中与砂、空气、水之间的传热、传质方式.采用LPG渗流扩散传热、传质多相混合数值模型,对某城市加气站LPG埋地储罐气相区发生泄漏事故在含水量不同的罐池中渗流扩散过程进行模拟,得到LPG饱和度、危险浓度、压力、流速等空间分布规律以及流动趋势、出口浓度变化,并对影响LPG流动的主要因素进行分析.模拟结果表明罐池出口位置对气体渗流扩散方向的影响大于储罐壁面形状和重力的影响;泄漏口和出口附近区域压力随距离下降梯度较大,中间压力下降较缓;储存压力是影响LPG在砂土介质渗流过程中压力的关键因素;在同一位置气体在非饱和砂中渗流的压力高于气体在干砂中的压力;存在砂土中的水有阻碍气体扩散的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号