首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
利用MIKE21 FM建立了钦州湾海域二维潮流模型,通过验证,结果与实测资料吻合良好,在此模型基础上分别选取企沙镇-乌雷村连线和21.75°N作为钦州湾和茅尾海的湾口断面,计算了钦州湾和茅尾海的纳潮量;在潮流模型的基础上耦合保守物质的对流扩散模型,分别对有无径流条件下钦州湾和茅尾海的水交换能力进行数值模拟研究。结果表明:钦州湾纳潮量最大为17.1×108m3,最小为1.89×108m3,平均9.20×108m3;茅尾海纳潮量最大为5.5×108m3,最小为0.62×108m3,平均2.96×108m3;有径流时钦州湾水体半交换时间为17.5 d,茅尾海半交换时间为9.3 d;无径流时钦州湾水体半交换时间为60.8 d,茅尾海半交换时间为45.4 d。  相似文献   

2.
以氮、磷为研究对象,从点源、面源污染物产生量和污水处理厂削减量3个方面分析深圳西部海域陆源入海污染物总量,结合箱式模型对珠江口海域和深圳湾海域污染物容纳量进行计算,并讨论深圳本地污染物量和外来污染物量的占比情况。结果表明,珠江口海域无机氮深圳本地污染物量占比为11. 29%,活性磷酸盐为10. 08%,其受周边广州、东莞等地排放的污染物及周边邻近海域的影响较大;深圳湾海域无机氮深圳本地污染物量占比为75. 40%,活性磷酸盐40. 11%,外来磷酸盐占比较高,无机氮主要为深圳本地产生的污染。  相似文献   

3.
风浪作用下海岸区域的酸性污染物扩散   总被引:1,自引:0,他引:1  
基于风浪和水流计算模型,综合考虑风浪作用的影响,建立了计算酸性污染物的输移扩散模型。通过计算三门湾海域在常浪向情况下四个时刻的污染物排放模式,将有无风浪影响的两者结果进行对比,初步分析了风浪作用下的酸性污染物扩散规律。结果认为:潮型、排放时刻、风浪等因素都会使酸性污染物的扩散面积与污染持续时间发生变化;并且在该方向风浪影响下,扩散面积与污染持续时间都有减小的趋势。  相似文献   

4.
为判别钦州湾海域水环境质量特征,采用多元统计分析方法对2008~2012年钦州湾13个站位的监测数据进行了因子分析及聚类分析。结果表明,2008~2012年间影响钦州湾水质的环境要素主要为DIN及PO4-P,其中约有24.1%的DIN监测数据及5.4%的PO4-P的监测数据显示钦州湾DIN及PO4-P含量超过国家三类水质标准限值,同时约有4.6%的Chl a监测值超过海水的富营养化阈值。对5 a的监测数据进行因子分析及聚类分析后,统计分析结果表明钦州湾水质主要受入海径流因素影响;钦州湾海域水质可划分为两大类:内湾水质受入海径流控制,影响其水质的环境要素为N、P营养盐;而外湾水质则受沿岸排污及毗邻外海水体交换的共同影响。综合各站位的因子得分,钦州湾湾口处水质最好,湾颈处次之,湾顶处水质最差。  相似文献   

5.
采用数值模拟的方法,在污水排放规模为10万m3/d,COD浓度为50 mg/L的情况下,计算并分析了24 h连续排放、高潮时至落急、高潮时至低潮时3种排污时段下分别位于-4 m、-6 m、-8 m和-10 m 4个水深位置的不同污水排海方式情况下,污染物输移扩散对南通通州湾海域的影响。结果表明,由于水动力条件的不同,不同位置排放口的绝对影响范围也产生变化,且随着水深的增加,水交换能力越强,污染物影响范围越小;在排放总量一定的情况下,不同时段排放时,污染物影响范围也不同,24 h连续排放对水环境影响最小,高潮时到落急、高潮时至低潮时时段排放时一定程度上控制了高浓度污染物扩散对近海海域的影响。  相似文献   

6.
根据对环钦州湾区域的入海河流、直排海污染源及养殖废水无机氮入海通量的估算,2011年钦州湾无机氮入海通量约为7 655 t,其中入海河流无机氮入海通量占总量的96.4%,直排海污染源次之。入海无机氮占钦州湾无机氮总量的比重为36.7%,说明钦州湾已属中等强度人为影响海域。根据对钦州湾富营养化症状——叶绿素a含量的分析,钦州湾富营养化症状不明显,钦州湾整体的富营养化程度较低。因而仅以营养盐含量评价目标海域的富营养化程度,易失之偏颇,宜结合富营养化症状来判断目标海域的富营养化程度。  相似文献   

7.
实施水污染物总量控制是改善水环境质量的重要措施,在环境管理工作中将发挥巨大的作用.通过对岐江河中山城区段污染源排污现状的分析评价、水体纳污能力的计算和排污口污染物控制总量的研究,明确了岐江河城区段的最大允许纳污量,并提出了污染物的总量控制方案和污染物排放削减建议.实施污染物总量控制研究,不仅为岐江河城区段水环境管理从定性向定量转变提供了依据,而且也为其它河流开展总量控制研究提供了借鉴.  相似文献   

8.
文章根据2018年10月(秋季)、2019年5月(春季)和2019年8月(夏季)在莱州湾进行的3次入海污染物通量和海域污染分布的陆海同步精细调查,估算了莱州湾主要入海河流及排污口石油类污染物排放通量,分析了莱州湾海域不同季节石油烃时空分布及影响因素,结合石油烃中正构烷烃组分及构成等,探讨了莱州湾海域水体中石油烃的来源。结果表明,莱州湾石油类污染物与盐度成显著的负相关,高值区主要位于湾底部的小清河河口等入海通量分担率最高的陆源排放影响区域,且不同季节石油类污染物浓度均值与入海通量变化趋势一致,均呈现夏季>春季>秋季的特征,表明陆源排放是莱州湾海域石油烃污染物浓度时空分布的决定性因素。同时,船舶运输、渔业活动等海上污染源对海域石油污染的贡献也不容忽视。莱州湾表层海水中正构烷烃的碳数呈明显的“低碳数”和“高碳数”的双峰分布,且低碳数峰群具有明显的奇偶优势,主峰分别为n-C15和n-C18,表明该海域石油主要来源于水生生物和陆生植物,但局部海域受到明显的外源石油污染。  相似文献   

9.
构建了包括4个大类、13个亚类的湛江湾生态系统服务类型体系,采用市场价格法、替代成本法、成果参考法等生态经济评估方法,对湛江湾生态系统服务价值进行了初步定量估算。结果表明,2009年湛江湾生态系统服务总价值约为12.62×108元,平均单位海域生态系统服务价值为467.49×104元/km2,是湛江近海单位海域面积海洋经济总产值的1.31倍。湛江湾生态系统服务的供给服务价值最大,占80.11%;其次为文化服务价值,占15.67%;调节服务价值最小,仅占4.22%。食品供给服务是当前湛江湾生态系统最突出功能,比重占总价值的79.23%,凸显其作为湛江重要水产养殖基地作用。与福建罗源湾和山东桑沟湾相比,湛江湾水产养殖污染对海湾生态系统健康的威胁更大。评估结果同时揭示出湛江湾污染物处理功能价值非常有限,减少陆源污染物的入湾排放是湛江生态海湾型城市建设的关键所在。  相似文献   

10.
排海通量最优化法是近年来常用于计算海域污染物环境容量的方法。对于石油烃这种非保守物质,本文提出了基于非线性规划的排海通量最优化法(简称非线性规划法)。首先,验证了石油烃点源的线性叠加性;其次,分别选用基于线性规划的排海通量最优化法(简称线性规划法)及非线性规划法,对莱州湾石油烃的环境容量进行计算。结果表明,在I/II类海水水质标准下,线性与非线性规划法计算出的年环境容量分别为6 101.8 t和4 576.1 t。按照线性规划法进行点源的石油烃最优排放规划时,将高估湾内石油烃的自净能力,从而对海域内生态系统造成破坏;非线性规划法则不会出现水质点浓度超标的情况,可对海域的生态环境保护起到更好的指导作用。  相似文献   

11.
区域规划中纳污海域海洋环境容量计算方法研究   总被引:2,自引:0,他引:2  
由于影响海洋污染物变化的海洋学和生态学过程的复杂性,尚没有建立起来计算海洋环境容量的普遍方法。本文运用分区达标控制法对大连市金港区总体规划中纳污海域的COD,无机氮,PO4-P和石油类污染物的海洋环境容量进行了计算。通过分区达标控制法计算结果为21500、2942、126和763 t/a。  相似文献   

12.
大连湾海水环境质量状况分析   总被引:9,自引:0,他引:9  
根据大连湾1997年11月水质调查资料,对该湾20世纪90年代末海域环境质量状况进行了分析,大连湾水域主要污染物为无机氮和活性磷酸盐,东部的环境质量好于西部,其中臭水厌附近有机污染及富营养化严重,环境质量日趋恶化。与90年代初相比,湾内部分水域无机氮及活性磷酸盐含量有所提高。应根据海域纳污能力,实际陆源污染物排海总量控制。  相似文献   

13.
2015年至2016年间,对钦州湾海域开展了四个航次调查研究,结合其它理化环境因子,对该海域尿素含量和浮游植物脲酶活性季节分布特征及影响因素以及尿素的来源和生物可利用性进行了初步探讨。结果表明,钦州湾表层水体中尿素分布呈现明显的由内湾向外湾递减的趋势,含量范围为0.24~5.14 μmol N/L,平均值夏季>春季>冬季>秋季,其中夏季尿素平均值为3.30 ±1.14 μmol N/L。浮游植物脲酶活性为0.15~2.60 μmol N/(L·h),冬季浮游植物脲酶活性最高,平均为0.91 ±0.55 μmol N/(L·h),其次是秋季和夏季,春季脲酶活性最低。不同季节尿素含量均≥1.00 μmol N/L,占溶解态有机氮(DON)的1.2%~63.0%,平均值为(15.6 ±14.2)%,表明尿素是钦州湾海域的重要氮源。钦州湾尿素含量和分布主要决定于陆源输入,尿素是DON的重要组成部分,故钦州湾DON具有较高的生物可利用性,为该海域浮游植物生长提供重要的氮源。  相似文献   

14.
大沽河干流青岛段纳污能力及排污总量控制分析   总被引:2,自引:0,他引:2  
在分析了大沽河干流青岛段水质现状的基础上,指出该研究区域的主要污染物为COD、NH3-N。根据其水域功能类别的水质标准,并且根据大沽河在枯水期没有流量的具体情况,在此时段把大沽河概化为多个坝上水库组成.利用水库水质模型计算水体纳污能力;在丰水期和平水期,利用河流水质模型计算水体纳污能力。在此基础上提出了大沽河干流青岛段COD(化学需氧量)、NH3-N(氨氮)的总量控制方案,对超过允许纳污量的河段要进行削减,使削减后的污染源排放的污染物达到排放标准。最后针对大沽河污染的实际情况,提出了保证总量控制目标实施的具体措施以及污染物防治的对策和建议,为该水域水资源保护和管理提供依据。  相似文献   

15.
分析了钦州湾及其入海河流表层沉积物中重金属(Cu、Zn、As、Pb和Cd)含量的分布特征,并采用潜在生态危害指数法对表层沉积物中重金属污染进行了潜在生态危害评价。结果表明:钦州湾及其入海河流表层沉积物中重金属Zn、As、Pb和Cd的含量均低于国家一类标准值,仅个别采样点Cu的含量高于国家一类标准值;重金属污染较重的区域包括茅尾海东部、钦州港附近海域及入海河流;钦州港两大工业园区和4条河流是其重金属的主要污染源;钦州湾及其入海河流表层沉积物中重金属潜在生态危害达到中度程度,其中Cd为主要污染物,应作为重点防预对象。  相似文献   

16.
通过2006年-2010年N、P、Si数据分析广西钦州湾海域N、P、Si的变化趋势、富营养化状况以及限制因子。分析表明:钦州外湾DIN、DIP、SiO3-Si含量呈波浪形变化并有所下降,钦州外湾2006年-2010年均为贫营养,外湾海水水质良好。茅尾海DIN值含量较高,海域受到N的影响。茅尾海2006年-2010年为轻度~中度富营养。茅尾海属于磷中等限制富营养,磷酸盐仅表现为相对不足,仍然有爆发赤潮的危险。控制茅尾海富营养化的关键在于控制磷的入海量。  相似文献   

17.
广西钦州湾营养状况季节分析与评价研究   总被引:2,自引:0,他引:2  
根据2009年1月、4月、8月和11月对钦州湾海域调查结果,分析并评价了该海域营养状况的季节变化。结果表明,钦州湾海域总溶解无机氮(DIN)含量范围在0.023 mg/L~1.750 mg/L,硅酸盐(SiO3-Si)含量范围在0.027 mg/L~3.900 mg/L,磷酸盐(PO4-P)含量范围在0.001 mg/L~0.158 mg/L。NO3-N是DIN的主要存在形式,占62%~78%。不同的营养盐季节分布有所差异。DIN季节分布表现为夏季春季秋季冬季;PO4-P季节分布为春季秋季冬季夏季;SiO3-Si季节变化为夏季秋季春季冬季。从营养结构看,与Justic'等提出的营养盐化学计量限制标准比较符合P限制条件,PO4-P可能成为浮游植物生长的潜在限制因子。按照营养状态指数值,钦州湾海域春季、夏季和秋季表层海水处于富营养化状态,钦州湾内湾富营养化程度高,一旦水文气象条件适宜,从春季到秋季该区域随时都会发生赤潮灾害的可能。  相似文献   

18.
于2015年4月和9月在钦州湾海域进行了2个航次的环境调查,获取了表层海水温度、盐度、pH、DO、COD、Chl a、石油烃、营养盐和重金属等指标数据,应用主成分分析法研究该海湾水质状况,并探讨影响该海区水质的主要驱动因子。通过主成分分析从18项调查指标中筛选提取出前4个主成分,可以解释原始变量信息73.68%的结果。主成分综合得分分析表明,钦州湾2015年4月水质污染比9月严重,空间分布上由内湾向外湾水质污染呈递减趋势,茅尾海水质污染严重。河流输入、鱼虾贝类养殖、浮游植物消长及水动力过程是影响钦州湾水质时空变化的重要因素。相关分析表明,影响钦州湾水质污染的主要驱动因子是氮营养盐、盐度、pH、Cd和Zn。陆源输入和养殖活动是主要污染源,应加强钦江、茅岭江的水环境保护,科学规划内湾养殖规模,进而改善钦州湾水质状况。  相似文献   

19.
海南岛近岸海域环境容量与纳污总量分析   总被引:1,自引:0,他引:1  
通过对海南岛"十二五"期间近岸海域纳污总量、环境质量状况及环境容量比较分析,得出各主要排污区环境容量的剩余环境容量。结果表明,全省主要污染物化学需氧量入海量仅占环境容量的2.6%,氨氮占环境容量的26.6%,虽然全省近岸海域环境基本未受污染物入海量影响,仍有较大的纳污空间,可利用的环境容量非常充裕。为避免出现排污达标但环境质量下降的状况,提出建立近岸海域主要污染物总量控制制度,由浓度控制到总量和浓度控制并存。  相似文献   

20.
湖泊水库水体氮、磷允许纳污量定量研究   总被引:13,自引:0,他引:13  
刘凌  崔广柏 《环境科学学报》2004,24(6):1053-1058
在充分考虑湖库水体污染物实际自净能力、并分析其出流污染物浓度分布规律的基础上,根据风险分析理论和Monte Carlo模拟方法,提出了湖库水体氮、磷允许纳污量计算方法,指出:在满足湖库水体污染物浓度达标率90%以上的条件下,所对应的水体污染物降解量才是湖泊水库水体氮、磷允许纳污量.通过实际算例对水库总氮、总磷允许纳污量的计算,说明了所提出的计算方法的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号