首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two commercial formulations of Bacillus thuringiensis var. kurstaki (BTK), Foray® 48B and Thuricide® 48LV, were applied aerially over nine spray blocks in a hardwood forest in West Virginia in 1991. Droplet spectra and spray mass deposits were determined using water‐sensitive paper strips (WSPS), glass micro‐fiber filters (GMFFs), glass plates and castor oil. Mass deposits of BTK were also assessed on natural foliage by two bioassay methods, i.e., feeding of homogenized foliage containing a starch‐sucrose solution and force‐feeding bioassay of foliar extracts containing re‐dissolved protein precipitate. Deposits on canopy foliage and ground samplers were also assessed by total protein assay and enzyme‐linked immunosorbent assay (ELISA). Droplet spectra on the WSPS were different from those on castor oil. Droplets on horizontal ground WSPS were larger than those on vertical ground WSPS. WSPS placed at canopy level collected more droplets than those at ground level. The total protein deposits (ng/cm2) were consistently higher on all blocks than the delta‐endotoxin protein deposits. Spray mass recovery on the ground samplers were low, and ranged from 2.9 to 8.0% of the applied rates.  相似文献   

2.
A research program was undertaken to develop information that could be used to estimate the risk of adverse effects of saline cooling tower drift on native and cultivated flora in the Indian Point, New York area. Eleven species of woody plants were exposed at 85 % relative humidity to a saline mist with 95% of the particles between 50 and 150 nm in diameter. Three biological factors—stage of development, species, and phenotype—determined the susceptibility of plants to saline aerosols when the occurrence of any lesion on the foliage was used as a measure of response. The effects of stage of development on the incidence and severity of foliar lesions depended upon the kind of plant. In deciduous woody species, the youngest leaves were most susceptible, but in conifers, the year-old needles were most susceptible. Canadian hemlock was the most susceptible species and witch hazel was the least susceptible. Median effective doses for these two species, although undetermined, could be more than 100-fold different (less than 2.4, the lowest used, and greater than 264 ng CI cm-2, respectively). Other species, ranked in decreasing order of susceptibility were: white ash, white flowering dogwood, forsythia, chestnut oak, silk tree, black locust, red maple, eastern white pine, and golden rain free. Phenofypic variation within a species was not so great—within a 10 to 20-fold increase in dose the incidence of injury went from 0 to 100%. Exposures with bush bean showed that the relative humidity (RH) during or after the exposure period affected the incidence of saline induced foliar injury. A change from 50 to 85% RH doubled the effectiveness of the saline mist. It was also found that compared to particles between 50 and 150 jum in diameter, an increase in the fraction of particles above 150 /xm increased the toxicity of the mist.  相似文献   

3.
Abstract

Two formulation concentrates of the insecticide, RH‐5992 [N'‐t‐butyl‐N'‐(3,5‐dimethylbenzoyl)‐N‐(4‐ethylbenzoyI) hydrazine], an aqueous flowable (2F) and an emulsion‐suspension (ES), were diluted with water to provide spray mixes containing dosage rates ranging from 35 to 150 g of the active ingredient (AI)/ha. The mixes were sprayed in a laboratory chamber, onto balsam fir branch tips collected from field trees and greenhouse‐grown seedlings. Droplet spectra and spray mass recovery were determined on artificial samplers. Simulated rainfall of two different intensities was applied at different rain‐free periods, and rain droplet sizes were determined. Foliar washoff of RH‐5992 was assessed after application of different amounts of rain, and the increase in soil residues was evaluated.

A direct relationship was indicated between the amount of rainfall and RH‐5992 washoff. The larger the rain droplet size, the greater the amount washed off. Longer rain‐free periods made the deposits more resistant to rain. Regardless of the amount of rainfall, rain droplet size and rain‐free period, foliar deposits of the 2F formulation were washed off to a greater extent than the ES formulation. The increase in soil residues due to foliar washoff was greater for the 2F than for the ES formulation. The deposits of the emulsion‐suspension were consistently more resistant to rain‐washing than those of the aqueous flowable formulation.  相似文献   

4.
Abstract

Spray deposits were measured on spruce foliage at tree canopy level and on glass plates at ground level, after aerial application of an emulsion formulation of fenitrothion at the rate of 0.21 kg AI in 1.46 L per ha over a 16 ha plot in a plantation forest. Fenitrothion deposits were quantified by gas‐liquid chromatography. A wide variation was observed in deposits on foliage and at the forest floor. Deposits were relatively higher on foliar samples collected from the upwind side of a tree canopy than those on the downwind side. Similarly, the glass plate placed under a tree on the upwind side received relatively higher deposit than the one on the downwind side. However, the glass plates placed in the adjacent forest openings collected markedly higher deposits. Results clearly indicate filtration of the spray droplets by canopy foliage. Assessment of the average deposit of fenitrothion at ground level (mean deposit from all sampling locations) indicated that ca. 19.4% of the applied material reached the forest floor. Within a sampling station, correlation was poor between foliar depsits and those on glass plates under the same trees or in nearby clearings. Analysis of fenitrothion deposits on foliage collected at 1 and 2 h after application indicated that the droplets took, more than 1 h for deposition on the tree canopy. On the other hand, deposition on the glass plates at ground level appeared to be practically complete within 1 h post‐treatment. This was attributed to the higher sedimentation velocities of the larger droplets which tend to travel faster to the floor level than the smaller droplets which float for a longer period near the tree canopy.  相似文献   

5.
Abstract

The effect of sunlight radiation, rainfall and droplet spectra of sprays on per ‐sistence of a Bacillus thuringiensis subspp. kurstaki (Btk) formulation, DiPel® 76AF, was examined after application onto spruce [Picea glauca (Moench) Voss] foliage. The investigation consisted of three studies: (i) Study I: a laboratory microcosm study to examine the photostability of DiPel 76AF deposits on foliage after different periods of exposure to two radiation intensities, (ii) Study II: a laboratory microcosm study to examine the rainfastness of foliar deposits after exposure to different amounts of rainfall consisting of two separate droplet spectra, and (iii) Study III: a field microcosm study to investigate the influence of two different droplet spectra of DiPel 76AF sprays on foliar persistence of Btk under natural weathering conditions. In all studies, persistence of Btk was investigated both by bioassay [using spruce budworm (Choristoneura fumiferana Clemens)] and total protein assay.

The findings of Study I indicated that bioactivity of foliar deposits decreased with increasing duration of exposure to radiation, and with increasing radiation intensity. The half‐life (DT50, the exposure period required for 50% of the initial bioactivity to disappear) was 5.1 d for the low intensity, and 3.9 d for the higher intensity. In contrast with the bioassay results, the total protein levels [determined by the bicinchoninic acid (BCA) method] showed no decrease with increasing duration of exposure, or with increasing radiation intensity.

The findings of Study II indicated that bioactivity of foliar deposits decreased with increasing cumulative rainfall. A new term, RF50 [the amount of rain (in mm) required to washoff 50% of the initial deposit], was introduced to understand the relationship between rainfall intensity and reduction in bioactivity. When the same amount of rain was applied in different droplet sizes, the RF50 value was high (5.2 mm) for the small rain droplets, and was low (2.9 mm) for the large rain droplets. Similar to the bioassay results, the total protein concentrations (determined by the BCA method) decreased with increasing amount of rain and with increasing rainfall intensity. The RF50 value (obtained using ng protein /cm2) was 5.4 mm for the small rain droplets, and was 3.4 mm for the large rain droplets.

The field microcosm study indicated that when DiPel 76AF was applied in small droplets (Dv.5 of 65 μm), the persistence of bioactivity was ca 8.0 d, whereas when it was applied in large droplets (Dv.5 of 130 nm) it was ca 11 d. Bioactivity decreased with time after spray, and the DT50 was 1.98 d for the spray of small droplets, and 2.87 d for that of large droplets. Similar to the bioactivity, the total protein concentrations also decreased with time after spray, and the DT50 values for the small and large droplet spectra were 3.45 and 6.07 d respectively.  相似文献   

6.
Evidence of extensive leaching losses of nutrients, particularly of K, suggest that loss of 137Cs by foliar leaching could be considerable and could stimulate further root uptake and redistribution of 137Cs in plants. This study investigated the foliar leaching of 137Cs from two deciduous graminoid species, Eriophorum vaginatum and Scirpus caespitosus and one evergreen shrub, Erica tetralix. Plants were labelled with 137Cs via the roots and subjected to a leaching treatment in August and November and changes in both leachate and plant 137Cs activity were determined. Leaching losses were significantly reduced in November compared with August in the deciduous species, but not in the evergreen E. tetralix. A reduction in the total activity of 137Cs of leached plants was observed not only in leaves but also in stems and roots in some instances, suggesting that 137Cs from these organs had been redistributed to replenish that lost by leaching from the leaves. The data suggest that leaching losses were greater from older and senescent leaves than from younger leaves of E. vaginatum. The extent to which this is an accurate representation of foliar leaching of field-grown plants by rainfall, and the likely fate of 137Cs lost by foliar leaching are discussed.  相似文献   

7.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH3) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH3 concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH3 passive dosi–tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH3 concentration h? 1 was reduced by distance from housing fans (P ≤ 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P ≤ 0.0005) and hybrid willow (3.41 vs. 3.02%; P ≤ 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P ≤ 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P ≤ 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM2.5(0.0054, 0.0054, 0.0005, and 0.0016 mg cm? 2; P ≤ 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm? 2, respectively; P ≤ 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM10 (0.0248 vs. 0.0036 mg cm? 2; P ≤ 0.0001) and PM> 10 (0.0033 vs. 0.0003 mg cm? 2; P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH3–N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   

8.
Abstract

Dimilin® WP‐25, a wettable powder formulation of diflubenzuron (DFB) [1‐(4‐chlorophenyl)‐3‐(2,6‐difluorobenzoyl) urea], was formulated in four different carrier liquids, viz., water; a light petroleum paraffinic oil, ID 585; a heavy paraffinic oil, Sunspray® 7N; and a 1:2 mixture of a light petroleum aromatic solvent (Cyclosol® 63) and canola oil; to provide four end‐use mixtures, Dim‐W, Dim‐585, Dim‐7N and Dim‐Cy‐C respectively, each containing 28 g of DFB per litre. Balsam fir branch tips clipped from greenhouse‐grown seedlings, and sugar maple branch tips clipped from field‐grown young trees, were exposed to uniform‐sized droplets (ranging in diameters from 135 to 190 μm) of the four end‐use mixtures which were atomized using a monodispersed droplet generator. Droplets were collected on the fir and maple branch tips and the initial residue per g fresh weight of foliage was determined by high‐performance liquid chromatography (HPLC). The branch tips were exposed to cumulative rainfall of 3, 6 and 10 mm at an intensity of 5 mm/h and at time intervals of 1, 12, 36 and 72 h after DFB treatment, to test the influence of ‘ageing’ of foliar residues on rainfastness. Foliar samples were collected for residue determination just before the onset of rainfall, and at 0.5 h post‐rain. DFB was quantified by the HPLC method. In the case of fir foliage, the Dim‐W formulation was the most susceptible to rain‐washing and the rainfastness did not increase with the ageing period of foliar deposits. In contrast, the three oil‐based mixtures showed greater rainfastness depending upon the carrier liquid and the ageing period. Rainfastness decreased in the order of Dim‐Cy‐C > Dim‐7N > Dim‐585 > Dim‐W. In contrast, the data on maple foliage indicated that the ageing of deposits increased the rainfastness of all the 4 end‐use mixtures. Dim‐585 was the most susceptible to rain washing, and rainfastness decreased in the order of Dim‐W > Dim‐Cy‐C > Dim‐7N > Dim‐585.  相似文献   

9.
Abstract

Foliar deposits, volatilization and persistence of azadirachtin‐A (AZ‐A) were investigated after application of four spray mixes prepared from a wettable powder (WP) and three emulsifiable concentrate (EC) formulations of neem. They were applied at the dosage rate of 50 g AI in 4 L/ha onto potted spruce seedlings in a laboratory spray chamber. Droplet‐size spectra and deposits were assessed using Kromekote® card/glass plate collection units. Foliar residues [dislodgeable residues (DR), penetrated residues (PR) and total residues (TR)] of AZ‐A and their volatilization were measured by HPLC at different intervals of time up to 60 h after treatment. Differences in the droplet‐size spectra and deposit levels were observed among the four spray mixes due to the influence of additives present in them. Dissipation half‐lives (DT50) of the DR, PR and TR in the foliage were low (range, 19.5 to 38.9 h) and varied according to the residue type and the spray mix used. The DT50 values of the DR were consistently lower (range, 19.5 to 31.9 h) than those of the PR (range, 30.5 to 38.9 h) due to preferential loss of the surface residues. The low DT50 values observed for the DR and TR in the foliage sprayed with the WP spray mix were attributed to the particulate nature of the deposit. AZ‐A volatilized appreciably from the DR rather than from the PR. The variations found in the amounts of AZ‐A volatilized (42 to 58%) and unaccountable (38 to 46%) from the initial TR values in spruce foliage, after 60 h, were attributed to the physical form of the deposits on the target surface and the influences of additives present in the different spray mixes.  相似文献   

10.
Abstract

Radiolabelled end‐use mixtures of glyphosate with and without a cationic surfactant (Ethomeen® T/25) and an organosilicone surfactant (Silwet® L‐77) were applied onto trembling aspen (Populus tremuloids Michx.) leaves at the rate of 1.0 kg of AE (acid equivalent) in 35 L/ha area of foliage. A 5‐mm rainfall with an intensity of 10 mm/h was applied at intervals of 0.5, 8, 24, 36, 48, 72, and 96 h after treatment. Glyphosate washoff was determined by liquid scintillation counting of radioactivity in the rain‐washing. At 36 h post‐treatment, both the adjuvants significantly reduced glyphosate washoff (Ethomeen by 69.6% and Silwet by 59.7%) from foliage, compared to the washoff (82.6%) when Vision alone was applied without the adjuvants. Results on the rate of plant growth indicated that with a rain‐free period of 8 h or more, the growth of most seedlings was stunted within 1 or 2 d. Percentage of foliar browning 20 d after treatment with rain‐free period of 8 to 48 h ranged from 8 to 80% for Vision alone, 75 to 100% for Vision with Ethomeen, and 85 to 100% for Vision with Silwet, respectively. Physical properties of the end‐use mixtures were measured with and without the two adjuvants to examine droplet spreading and drying rates in relation glyphosate rainfastness. The Silwet adjuvant lowered the surface tension of the end‐use mixture, but Ethomeen did not. Droplets containing Silwet were spread more than those containing Ethomeen. However, the greater area of contact caused by Silwet did not contribute to a significant increase in the translocation rate of glyphosate into untreated parts of the seedlings, and showed no relationship with rainfastness of glyphosate deposits on trembling aspen.  相似文献   

11.
An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O3) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O3 related field observations and subtle foliar injury are also given.  相似文献   

12.
Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar δ15N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha−1 a−1 since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems.  相似文献   

13.
Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO2 assimilation and stomatal conductance (gs), impaired Rubisco efficiency and regeneration capacity (Vc,max,Jmax) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed.  相似文献   

14.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

15.
Abstract

A commercial formulation of Bacillus thuringiensis Berliner var. kurstaki (BTK), Foray® 48B, was sprayed aerially over four blocks B13, B14, B15A and B15B in an oak forest in Wayne County, Pennsylvania during May 1990. B13 and B14 were sprayed at 75 billion international units (BIU) in 5.91 litres/ha and the other two at 50 BIU in 3.94 litres/ha. Oak foliage was collected at different intervals of time after treatment. Three types of bioassays were conducted against fourth instar gypsy moth larvae, viz., direct feeding of sprayed foliage, feeding on diet containing homogenized foliage, and force‐feeding of foliar extracts. Larval mortalities were converted into international units of BTK activity per unit area (IU/cm2) of foliage. Foliar extracts were also subjected to enzyme‐linked immunosorbent assay (ELISA) to determine the concentration of delta‐endotoxin protein. Regardless of the type of bioassay used, bioactivity of BTK persisted in foliage for about a week in all the blocks. The half‐life of inactivation, DT50, ranged from ca 12 to 22 h. The immunoassay data indicated a shorter duration of persistence (i.e., about 2 d) of the delta‐endotoxin protein, with DT50 values ranging from 10 to 15 h. Formulation ingredients present in Foray 48B played a role in the toxicity of BTK to gypsy moth larvae.  相似文献   

16.
Abstract

The reaction between three different Ca-based sorbents and SO2 were studied in a medium temperature range (473–773 K). The largest SO2 capture was found with Ca(OH)2 at 773 K, 126.31 mg SO2?g Ca(OH)2 ?1, and the influence of SO2 concentration on the sorbent utilization was observed. Investigations of the internal porous structure of Ca-based sorbents showed that the initial reaction rate was controlled by the surface area, and once the sul-fated products were produced, pore structure dominated. To increase the surface area of Ca-based sorbents available to interact with and retain SO2, one kind of CaO/activated carbon (AC) sorbent/catalyst was prepared to study the effect of AC on the dispersion of Ca-based materials. The results indicated that the Ca-based material dispersed on high-surface-area AC had more capacities for SO2 than unsupported Ca-based sorbents. The initial reaction rates of the reaction between SO2 and Ca-based sorbents and the prepared CaO/AC sorbents/cata-lysts were measured. Results showed that the reaction rate apparently increased with the presence of AC. It was concluded that CaO/AC was the active material in the des-ulfurization reaction. AC acting as the support can play a role to supply O2 to increase the affinity to SO2. Moreover, when AC is acting as a support, the surface oxygen functional group formed on the surface of AC can serve as a new site for SO2 adsorption.  相似文献   

17.
Abstract

Spray deposit patterns were measured on aluminum coils and live balsam fir needles at different canopy heights, following aerial application of mexacarbate (4‐dimethylamino‐3,5‐xylyl N‐methylcarbamate) over a conifer forest in New Brunswick. Droplet size spectra of the spray cloud were determined on cylindrical Kromekote® cards placed at the corresponding crown heights. Ground deposits were collected on cylindrical Kromekote cards, aluminum coils and natural balsam fir foliage placed In forest clearings and under different types of vegetation.

Canopy deposits decreased progressively from the top to the bottom level of the tree crown. This trend was observed on aluminum coils, live fir foliage, and Kromekote cards. Droplet size spectra were similar at all sampling heights of the tree crown, and were comparable to those obtained on the ground cards placed in the forest clearings. Deposits of mexacarbate obtained on ground samplers on the open forest floor were markedly lower than those found at the top canopy but were similar to those at the mid or bottom canopy level. Droplet size spectra and mexacarbate deposits obtained on samplers placed under different types of forest vegetation indicated a selective filtration of the large droplets present in the spray cloud by plant canopies.  相似文献   

18.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

19.
Abstract

The Foliar Washoff of Pesticides (FWOP) Model was developed to provide an empirical simulation of pesticide washoff from plant leaf surfaces as influenced by rainfall amount. To evaluate the technique, simulations by the FWOP Model were compared to those by the foliar washoff algorithm of the Chemical, Runoff and Erosion from Agricultural Management Systems (CREAMS) Model. The two algorithms were linked individually to the Pesticide Runoff Simulator (PRS) for the comparison. Five years of test data from a Mississippi watershed were used to evaluate six insecticides (carbaryl, profenofos, methyl parathion, permethrin, phorate, and toxaphene).

Initially, the FWOP model was used to evaluate the relative impact of chemical distribution (foliage versus soil) on the subsequent foliar washoff and soil surface contributions to runoff losses. Results indicated that runoff losses were low If all of the insecticide was applied to the foliage whereas high losses occurred if applied only to the soil. When an assumed application was distributed between the plant and soil (i.e., 90% to foliage and 10% to soil), predicted runoff losses compared well with observed field data (<3% of the application rate).

Except for toxaphene, the FWOP model generally predicted less washoff and subsequent runoff losses than the CREAMS approach. Simulated toxaphene washoff losses were in good agreement with observed field data. Statistical comparisons of the two modeling approaches using the Kolmogorov‐Smirnov test showed differences in the two cumulative frequency distributions for washoff but smaller differences for runoff. Average 5‐year runoff losses, however, were greater using the CREAMS approach—by factors of 2, 3, and 3 for profenofos, methyl parathion and phorate, respectively.

Results from this study will be useful for upgrading current exposure assessment models to more accurately address foliar washoff losses of pesticides as well as for assessing the impact of foliar‐applied chemicals on environmental quality.  相似文献   

20.
The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O3 in the 2001 season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号