首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A laboratory study was conducted to monitor the effect of pencycuron [1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea] on microbial parameters of alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) under waterlogged condition. Pencycuron at field rate (FR), 2FR and 10FR affected the microbial biomass C (MBC), soil ergosterol content and fluorescein diacetate hydrolyzing activity (FDHA) differentially. The DCM amendment did not seem to have any counteractive effect on the toxicity of pencycuron on the microbial variables. The change in microbial metabolic quotient (qCO2) and microbial respiration quotient (QR), indicated pencycuron induced disturbance at 10FR. Present study revealed that the metabolically activated microbial population was more suppressed compared to the dormant population.  相似文献   

2.
Clay loam soil from agricultural fields of alluvial (AL) soil (typic udifluvent) and coastal saline (CS) soil (typic endoaquept) were investigated for the degradation and effect of pencycuron application at field rate (FR), 2-times FR (2FR) and 10-times FR (10FR) with and without decomposed cow manure (DCM) on soil microbial variables under laboratory conditions. Pencycuron degraded faster in CS soil and in soil amended with DCM. Pencycuron spiking at FR and 2FR resulted in a short-lived (in case of 10FR slightly longer) and transitory toxic effect on soil microbial biomass-C (MBC), ergosterol content and fluorescein diacetate hydrolyzing activity (FDHA). Amendment of DCM did not seem to have any counteractive effect of the toxicity of pencycuron on the microbial variables. The ecophysiological status of the soil microbial communities as expressed by microbial metabolic quotient (qCO2) and microbial respiration quotient (Q(R)) changed, but for a short period, indicating pencycuron induced disturbance. The duration of this disturbance was slightly longer at 10FR. Pencycuron was more toxic to the metabolically activated soil microbial populations, specifically the fungi. It is concluded that side effects of pencycuron at 10FR on the microbial variables studied were only short-lived and probably of little ecological significance.  相似文献   

3.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2′,6′-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30°C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   

4.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   

5.

To investigate the effects of moist olive husks (MOH-residues) on soil respiration, microbial biomass, and enzymatic (o-diphenoloxidase, β-glucosidase, dehydrogenase and alkaline phosphatase) activities, a silty clay soil was incubated with 0 (control), 8 × 103 (D), 16 × 103 (2D) and 80 × 103 (10D) kg ha?1 of MOH-residues on a dry weight basis. Soil respiration and microbial biomass data indicated that the addition of MOH-residues strongly increased microbial activity proportionally to the amounts added. Data of qCO2 suggested that the respiration to biomass ratio of the microbial population was strongly modified by MOH-residues additions during the first 90 days of incubation. The qCO2 data suggested a low efficiency in energy yields from C oxidation during the first 2 months of soil incubation. qFDA seemed to be relatively unaffected for treatments D and 2D as compared to the control, but was significantly lowered by the application of 10D, showing the lowest hydrolytic activity of microbial biomass in this treatment up to 360 days of incubation.

o-Diphenoloxidase activity was delayed, and this delay was extended with the addition of larger quantities of MOH-residues. Alkaline phosphatase, β-glucosidase and dehydrogenase activities were in line with the findings on microbial biomass changes and activities. The biological and biochemical data suggest that the addition of a large quantity of MOH-residues (80 × 103 kg ha?1) strongly modifies the soil characteristics affecting the r- and K-strategist populations, and that these changes last for at least the 360 days of incubation. The data also suggest that application rates exceeding 16 × 103 kg ha?1 are not recommended until the agro-chemical and -physical functions of the soil are further studied.  相似文献   

6.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

7.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

8.
In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)–soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0–75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15–45%, and then an increasing trend from compost application of 45–75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30–75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ?45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony–soil ecosystems.  相似文献   

9.

Agricultural pharmaceuticals are a major environmental concern because of their hazardous effects on human and wildlife. This study analyzed phospholipid ester-linked fatty acids (PLFAs) and quinones to investigate the effects of a steroid (17β-estradiol) and agricultural antibiotics (chlortetracycline and tylosin) on soil microbes in the laboratory. Two different types of soil were used: Sequatchie loam (0.8% organic matter) and LaDelle silt loam (9.2% organic matter). The soils were spiked with 17β-estradiol and antibiotics, alone or in combination. In Sequatchie loam, 17β-estradiol significantly increased the microbial biomass, especially the biomarkers for beta proteobacteria (16:1ω7c, 18:1ω7c, Cy17:0, and UQ-8). The coexistence of antibiotics decreased the stimulatory effect of 17β-estradiol on the microbial community. In LaDelle silt loam, there were no significant differences in total microbial biomass and their microbial community structure among the treatments. Overall, 17β-estradiol changed the microbial community of soil and the presence of antibiotics nullified the effect of 17β-estradiol. However, the effects of 17β-estradiol and antibiotics on soil microbes were sensitive to the soil properties, as seen in the LaDelle silt loam.  相似文献   

10.

Microbial displacement in the soil is an important process for bioremediation and dispersal of wastewater pathogens. We evaluated cell movement in surface and subsurface red-yellow podzolic soil driven by advection and microbial motility and also survival of a microbial population at high pressure as is prevalent in deep soil layers. Pseudomonas fluorescens Br 12, resistant to rifampycin and kanamycin, was used as a model organism traceable in non-sterile soil. Our results showed that more than 40% of the P. fluorescens population survived under high pressure, and that microbial motility was not a major factor for its displacement in the soil. Cells were adsorbed in similar amounts to surface and subsurface soils, but more viable cells were present in the leachate of surface than in subsurface soils. The nature of this unexpected cell binding to the subsurface soil was studied by EPR, Mossbauer, NMR, and infrared techniques, suggesting iron had a weak interaction with microbes in soil. P. fluorescens movement in soil resulted mainly from convection forces rather than microbial motility. The transport of this bacterium along the transept toward groundwater encountered restricted viability, although it survived under high pressure conditions simulating those in deep soil layers.  相似文献   

11.

The research was carried out in order to verify the influence that light, oxygen, and microbial activity have on the degradability of pyrimethanil (PYR) in soil. The products of degradation were also identified and their evolution in time evaluated. The results indicate that the molecule is more persistent in the absence of light, oxygen, and microbial activity. The order of importance of these three factors is as follows: light < microbial activity < oxygen. The following products of degradation were identified: (1) benzoic acid, (2) cis,cis-muconic acid, (3) hydroxyl-4,6-dimethyl-2-pirimidinamine, (4) N′-ethyl-N-hydroxyformamidine, and (5) 4,6-dimethyl-2-piridinamine, which appeared different from those reported in literature for the degradation of PYR in abiotic conditions. This result suggests that the degradation in soil is mainly biotic.  相似文献   

12.

The effect of one organic amendment consisting of an urban waste compost (UWC) was assessed on the sorption properties of the herbicide 2,4-D on four soils of different physicochemical characteristics. The soils chosen were a Typic Haphorthod (ST), a Typic Endoaquept (SR), an Entic Pelloxerert (TO), and a Typic Eutrochrept (AL). Adsorption experiments were performed on the original soils, and on mixtures of these soils with UWC at a rate of 6.25% (w/w). These mixtures were used just after preparation, and after aging for 8 and 25 weeks. 2,4-D adsorption was the highest on ST soil, whereas the lowest adsorption was for SR soil. This behavior is related to the high amount of organic matter (OM) and amorphous iron and aluminum oxides content on soil ST, whereas soil SR had the lowest OM content and specific surface area of the soils of this study. Addition of exogenous OM to soils caused an increase in the 2,4-D adsorption by three of the soils treated with UWC, with the only exception being ST soil, due to an observed decrease in its specific surface area. The adsorbed amounts of the herbicide on aged organic fertilized soils diminished in three of the amended soils, but was still greater than on unamended soils. In contrast, the ST soil showed the largest adsorption for unamended soil.  相似文献   

13.
Abstract

A laboratory study was conducted to examine the effects of five insecticides on microbial and enzymatic activities important to fertility in sandy soil. Cyfluthrin significantly increased bacterial populations after 2 wks. Imidacloprid showed an inhibitory effect on fungal numbers after 2 wks incubation while the others did not affect fungal population. No inhibitory effect was observed on nitrification of soil indigenous nitrogen. All treatments stimulated S‐oxidation after 4 wks. With the exception of cyfluthrin and imidacloprid after 2 wks, denitrification in sandy soil indicated that all treatment inhibited denitrification throughout the experiment. No inhibitory effects on biomass‐c were observed during 2‐wk periods. An inhibitory effect was observed on amylase after 1 wk while significant recovery was observed after 3 wks. With the exception of HgCl2, no effect was observed on reducing sugar formation for 2 wks with all treatments. Formazan formation resulting from dehydrogenase activity was significantly greater with tebupirimphos and Aztec for 1 wk. All treatments supressed phosphatase activity for 1 wk, while none of the treatments suppressed phosphatase activity after 2 wks. Amitraz, tebupirimphos and Aztec inhibited urease activity for 1 wk. With the exception of tebupirimphos, no treatments affected N2‐fixation in soil. Although short‐lived inhibitory effects on activities of microbes and enzymes were caused by the insecticides, the soil indigenous microbes can tolerate the chemicals used for control of soil pests.  相似文献   

14.
Deltamethrin [(S)-cyano-3-phenoxybenzyl-cis-(1R,3R)-2,2-dimethyl) cyclo–propane carboxylate),1] labelled at gem-dimethyl groups of the cyclopropane ring was applied on two Egyptian soils at a level of 10 mg/kg soil for a laboratory incubation experiment under aerobic and anaerobic conditions. A steady decrease of soil extractable14C-residues, accompanied by a corresponding increase of non- extractable bound 14C-residues was observed over a 90-day incubation period. The percentage of evolved 14CO2 increased with time under aerobic and anaerobic conditions in both soils. The effect of deltamethrin on soil microorganisms as well as the counter effect of microorganisms on the insecticide was also investigated. As the incubation period increased, the inhibitory effect of the insecticide on the microorganisms decreased and the evolution of carbon dioxide depended on the applied dose. The nature of soil methanol soluble residues was determined by chromatographic analysis which revealed the presence of the parent insecticide as the main product in addition to four metabolites: 3-(2′,2′-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (II); 3-phenoxybenzaldehyde (III); 3-phenoxybenzoic acid (IV); 3-phenoxybenzyl alcohol (V).  相似文献   

15.
Abstract

This study reports degradation of azoxystrobin (AZOXY) and imidacloprid (IMIDA) in the rice straw (RS)/corn cob (CC) and peat (P)/compost (C)-based biomixtures. The effect of biomixture preconditioning (10?days incubation prior to pesticide application), pesticide concentration and moisture content was evaluated. Results suggested that conditioning of biomixture greatly affected IMIDA degradation where half-life (t1/2) was reduced by 5–9 times. This was attributed to higher microbial biomass carbon content and dehydrogenase activity in the conditioned biomixtures. Pesticide application in the conditioned biomixture did not show any negative impact on soil microbial parameters. Both pesticides degraded at faster rate in the rice straw-based biomixtures than in the corn cob-based biomixtures. Degradation slowed down with increase in initial concentration of pesticides in biomixture and 1.6–3.0 (AZOXY) and 2.4–3.6 (IMIDA) times increase in t1/2 values was observed. The moisture content of biomixture showed positive effect on degradation which increased when moisture content was increased from 60 to 80% water holding capacity. The effect was significant for IMIDA degradation in the corn cob-based biomixtures and AZOXY degradation in the peat biomixtures. The rice straw-based biomixtures were better in degrading AZOXY and IMIDA and can be used in biopurification systems.  相似文献   

16.
The effect of heavy metals on soil free-living nematodes, microbial biomass (C mic) and basal respiration (BR) was studied along a 15 km downwind deposition gradient, originating at the Almalyk Industrial Complex. Soil samples from 0-10 and 10-20 cm layers were collected at 5 km intervals. A significant decrease in heavy metal deposition was found going from the source in the downwind direction and with depth. The soil microbial biomass, basal respiration and derived microbial indices for soil samples from the Almalyk industrial area were analysed. The lowest soil microbial biomass and total number of free-living nematodes were found in soil samples near the industrial complex, with a high heavy metal and weak total organic carbon (C org) content. The highest C mic was found in the soil samples collected 15 km from the pollution source. BR displayed similar results. The derived indices, metabolic quotient (qCO2) and microbial ratio (C mic/C org), revealed significant differences with distance, confirming environmental stress in the first and second locations. The present study elucidates the importance of soil nematode and microbial populations as suitable tools for bio-monitoring the effect of heavy metals on soil systems.  相似文献   

17.
The effects of pesticides (a herbicide and a fungicide) on the microbial community structure and their activity were analyzed in soil from four alpine pasture grasslands in Slovakia. Specifically, the effects of the herbicide, Gesagard (prometryn active ingredient), and fungicide, Fundazol 50 WP (benomyl active ingredient), on the microbial respiration activity (CO2 production), the numbers of selective microbial physiological groups (CFU.g?1) and the structure (relative abundance) of soil microbial communities [(phospholipid fatty acid (PLFA)] were analyzed under controlled laboratory conditions. All treatments including the treatments with pesticides increased (statistically significantly) the production of CO2 in all fields during 21 days of incubation and posed a statistically insignificant negative influence on the numbers of the observed physiological groups of microorganisms. The significantly negative influence was evaluated only in the numbers of two physiological groups; spores of bacteria utilizing organic nitrogen and bacteria, and their spores utilizing inorganic nitrogen. A shift in the microbial composition was evident when the PLFA patterns of samples from different sites and treatments were compared by the Principal Component Analysis (PCA). According to the second component PCA 2 (15.95 %) the locations were grouped into two clusters. The first one involved the Donovaly and Dubakovo sites and the second one contained the Velka Fatra and Mala Fatra locations. The PLFA composition of the soils showed important changes after the treatment with pesticides according to PCA 1 (66.06 %). Other treatments had not had a significant effect on the soil microbial community with the exception of the population of fungi. The lower relative abundance (significant effect) of Gram-positive bacteria, actinomycetes and general group of bacteria were determined in samples treated by the herbicide Gesagard. The application of fungicide Fundazol decreased (statistically significantly) the relative abundance of actinomycetes and general group of bacteria and paradoxically increased the population of fungi.  相似文献   

18.
Abstract

After application, herbicides often reach the soil and affect non-target soil microorganisms, decreasing their population, diversity or affecting metabolic activity. Therefore, laboratory studies were performed to evaluate the effects of diuron, hexazinone and sulfometuron-methyl alone and mixed upon carbon transformation by soil microorganisms in clayey and sandy soils and the effect on bacterial diversity and structure. Control treatment without herbicide application was also performed. Sub-samples from the control and herbicide treatments (10?g – in triplicate) were collected before herbicide application and 7, 14, 28 and 42?days after treatment (DAT), then 1?mL of 14C-glucose solution was applied. The released 14CO2 was trapped in 2?M NaOH solution and the radioactivity was analyzed by liquid scintillation counting (LSC), 12?h after glucose application. The effect of herbicides on bacterial diversity was evaluated by T-RFLP. The experiment was conducted in a complete randomized design. Hexazinone did not affect 14CO2 evolution. Diuron showed a greater 14CO2 evolution in sandy and clayey soil, while sulfometuron-methyl led to an increase in sandy soil, at 42 DAT. A greater evolution of carbon was observed in the treatment with herbicide mixture in sandy soil, compared with the same treatment in clayey soil or control. However, the herbicide mixture application did not affect the soil biological activity measured by the respiration rate induced by substrate. On the other hand, the herbicide mixtures affected the bacterial diversity in both soils, being the strongest effect to diuron and sulfometuron-methyl in clayey soil and hexazinone in sandy soil.  相似文献   

19.

The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m−2 year−1), low-N (N1: 5 g N m−2 year−1), medium-N (N2: 10 g N m−2 year−1), and high-N (N3: 15 g N m−2 year−1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3–5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the “priming” effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  相似文献   

20.
Abstract

Degradation of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0–10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain, were incubated in biometer flasks for 350 days at 25°C. Ring-UL-14C-trifluralin was applied at the rate of 2 µg g?1 with 78.7 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3% of the applied radiocarbon was evolved as 14CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号