首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
A new species of Rhodococcus, designated strain MZ-3, which could degrade acetochlor efficiently were isolated and identified. The isolate could degrade and utilize acetochlor as the sole source of carbon, nitrogen, and energy for growth. The optimal conditions for the degradation and growth of MZ-3 were pH 7.0 and 30°C. Under these conditions, this strain could completely degrade 200 mg/L of acetochlor within 12 h of incubation. During the biodegradation process, the enantioselectivity of the strain was investigated using a chiral high-performance liquid chromatography (HPLC) system. However, no obvious enantioselectivities were found. 2-chloro-N-(2-methyl-6-ethylphenyl) acetamide (CMEPA) was detected as the intermediate using liquid chromatography-mass spectrometry (LC-MS) analyses. Our results suggest that strain MZ-3 might be a promising microorganism for the bioremediation of acetochlor-contaminated environments because of its acetochlor-degrading performance.  相似文献   

2.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

3.
A new imidacloprid (IMI) degrading bacterium Z-9 (deposited number CGMCC 6648) was isolated and identified as Pseudoxanthomonas indica by 16S rRNA gene analysis. Two metabolites were identified as olefin and 5-hydroxy IMI by liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis. P. indica CGMCC 6648 degraded 70.1% of IMI (1.22 mmol L?1) and formed 0.93 mmol L?1 5-hydroxy IMI and 0.05 mmol L?1 olefin IMI in 6 days and in the presence of 100 mmol L?1 glucose. The half-life of IMI degradation was 3.6 days. P. indica CGMCC 6648 transforms IMI via a co-metabolism mechanism and different carbohydrates have significant effects on 5-hydroxy IMI formation, whereas different organic acids have substantial effects on olefin IMI production. Lactose is the best co-substrate for IMI degradation and 5-hydroxy IMI formation with 0.77 mmol L?1 degraded and 0.67 mmol L?1 formed in 48 h, respectively. Pyruvate is the best co-substrate for olefin IMI formation with 0.17 mmol L?1 produced in 96 h for all carbon sources tested. Pyruvate significantly stimulates the conversion of 5-hydroxy IMI to olefin IMI, whereas glucose slightly inhibits this reaction. P. indica CGMCC 6648 rapidly degrades IMI and forms olefin IMI, which may enhance its potential for biodegradation of IMI and increase its insecticidal activity, which can decrease the IMI dosage required.  相似文献   

4.
A novel strain HZ5 was isolated from the activated sludge of a pesticide manufacturer in Hangzhou, which was capable of degrading beta-cypermethrin (beta-CP). Based on its physiological characteristics and analysis of 16S rDNA gene, strain HZ5 was identified as Azoarcus indigens, which was a new genus that can degrade beta-CP effectively. Strain HZ5 could degrade beta-CP over a wide range of temperature (20 to 40°C) and pH (5.5 to 9.0), and the optimal temperature and pH were 30°C and 7.0. The highest degradation rate was approximately 70% of 50 mg/L beta-CP within 144 h at pH 7.0 and 30°C in MSM. An additional carbon source could enhance the biodegradation of beta-CP. Studies on biodegradation of the beta-CP showed no significant enantioselectivity. During the process, two main intermediate metabolites were produced by strain HZ5 and determined as 3-phenoxybenzaldehyde and 3-phenoxybenzoic acid by gas chromatography-mass spectrometry (GC-MS) analysis. The results indicated that strain HZ5 may have potential application in bioremediation of beta-CP polluted environment.  相似文献   

5.
The pryene-degradation bacterium strain USTB-X was newly isolated from the polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Beijing Coking Plant, China. The strain was identified as Acinetobacter with respect to its 16S rDNA and morphological and physiological characteristics. The strain was Gram-negative, non-mobile, non-acid-fast, and non-spore-forming, short rods in young culture and 0.8–1.6 μm in diameter and 1.2–2.5 μm long in the stationary phase of growth. Strain USTB-X could utilize pyrene, naphthalene, fluorene, phenanthrene, benzene, toluene, ethylbenzene, ethanol, methanol, and Tween 80 as sole source of carbon and energy. The strain could produce biosurfactants which enhanced the removal of pyrene and could remove 63 % of pyrene with an initial concentration of 100 mg·L?1 in 16 days without other substrates. Based on the intermediates analyzed by gas chromatography-mass spectrometry, we also deduced the possible metabolic pathway of strain USTB-X for pyrene biodegradation. Results indicated that the strain USTB-X had high potential to enhance the removal of PAHs in contaminated sites.  相似文献   

6.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

7.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L?1 of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine.  相似文献   

8.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

9.
Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source. The isolate degraded 98% of 100-μg mL?1 carbofuran within 10 days with the formation of carbofuran phenol as the only detectable metabolite. The degradation of carbofuran was followed by measuring its residues in liquid cultures using high performance liquid chromatography (HPLC). Physical and morphological characteristics as well as molecular characterization confirmed the bacterial isolate to be a member of Bacillus species. The results indicate that this strain of Bacillus sp. could be considered as Bacillus cereus or Bacillus thuringiensis with a bootstrap value of 100% similar to the 16S rRNA gene sequences. The biodegradation capability of the native strains in this study indicates that they have great potential for application in bioremediation of carbofuran-contaminated soil sites.  相似文献   

10.
Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0–9.0 and 30–40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg2+ and Mn2+ (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe3+ or Fe2+ was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N′dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.  相似文献   

11.
The current environmental legislations recommend monitoring chemical contaminants such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans before the use of sewage sludge on the agricultural land. In this study, a solid–liquid extraction with low-temperature purification (SLE-LTP) was optimized and validated to determine 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in sewage sludge and soil samples. The analyses were performed by gas chromatography-mass spectrometry operating in the selective ion mode (GC-MS-SIM). Acetonitrile:ethyl acetate 6.5:1.5 (v/v) was the best extraction phase, and the recoveries percentages were close to 100%. The linearity was demonstrated in the range of 1.25–25 µg L?1 of 1.25–20 µg L?1 for sewage sludge and soil, respectively. Matrix effect was proved for the two compounds and in the two matrices studied. Extraction percentages were between 78 and 109% and relative standard deviations ≤ 19%. The proposed method is faster than methods described in the literature because showed a few steps. The quantification limits (LOQ) in sewage sludge were 6.4 and 32 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. In soil, LOQs were 0.8 and 8.0 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. These values are lower than the maximum residue limits established by European Legislation. The method was applied to 22 agricultural soil samples from different Brazilian cities and 2,3,7,8-TCDF was detected in one of these samples.  相似文献   

12.
The aim of study was to determine 9 organic acids in nine aboveground and seven wood-growing wild edible mushroom species originated from an area under the direct influence of a busy trunk road in Poland. The organic acids in the extracts of samples were identified by reversed-phase column liquid chromatography (RPLC). The presented results show that all the mushroom species were characterized by high variation in the profile and content of the analyzed acids. Each of mushroom species contained oxalic acid, the profiles of the other acids strictly depended on mushroom species. Among aboveground species, the highest total content of organic acids was found in Lepista gilva (267.5 ± 26.6 mg g?1 dry weight (DW)), while Laccaria amethystina was characterized by the lowest content (37.7 ± 6.5 mg g?1 DW). Within wood-growing species, the highest content of organic acids was determined in Flammulina velutipes (171.9 ± 26.7 mg g?1 DW), whereas the lowest content (34.2 ± 2.9 mg g?1 DW) of the studied acids was observed in Grifola frondosa.  相似文献   

13.
A bacterium (Paracoccus sp. YM3) capable of degrading carbofuran was isolated from carbofuran-contaminated sludge. The strain was shown to metabolize carbofuran (50 mg L?1) to carbofuran-7-phenol in minimal salt medium within 6 days in which the pesticide was the only source of carbon. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). The addition of an other carbon source led to accelerated biodegradation. The relevant degrading-enzyme was intracellular and inducible. A tobacco hypersensitivity experiment showed that YM3 could eliminate carbofuran in soils effectively and safely. This is the first report of a Paracoccus sp. that could degrade carbofuran. The present study may provide a basis for biotreatment of wastewaters and bioremediation of carbofuran-contaminated soils.  相似文献   

14.
The present study was designed to reveal whether long-term consumption of bitter apricot seeds causes changes in lipid profile and other risk factors for cardiovascular diseases. The study group consisted of 12 healthy adult volunteers (5 females and 7 males). The average age of women was 41.60 ± 11.28 years and the average age of men was 36.71 ± 13.70 years. Volunteers consumed 60 mg kg?1 of body weight of bitter apricot seeds divided into 8–12 doses daily for 12 weeks. Volunteers were recruited from the general population of Slovak Republic. After 12 weeks, mean body weight of the participants increased from 77.34 to 78.22 kg (P > 0.05). The average total cholesterol levels decreased from 4.86 mmol L?1 at the beginning of the study to 4.44 mmol L?1 at the end of the study (P < 0.05). We did not observe any significant increase in high-density cholesterol (from 1.55 to 1.60 mmol L?1). The average low-density cholesterol levels decreased from 2.93 mmol L?1 at the beginning of the study to 2.31 mmol L?1 at the end of the study (P < 0.001). Concentration of triglycerides increased significantly over the 12-week intervention period from 0.84 to 1.17 mmol L?1. After the intervention, the high-sensitivity C-reactive protein level decreased from 1.92 to 1.23 mg L?1, but results were non-significant (P > 0.05). Creatine kinase serum levels increased from 2.31 to 2.77 mg L?1 (P > 0.05) over the 12-week intervention period. The results suggest that regular intake of bitter apricot seeds may be considered potentially useful for prevention of cardiovascular diseases.  相似文献   

15.
A new strain isolated from activated sludge and identified as Burkholderia vietnamiensis C09V was used to biodegrade crystal violet (CV) from aqueous solution. To understand the degradation pathways of CV, batch experiments showed that the degradation using B. vietnamiensis C09V significantly depended on conditions such as pH, initial dye concentration and media components, carbon and nitrogen sources. Acceleration in the biodegradation of CV was observed in presence of metal ions such as Cd and Mn. More than 98.86C of CV (30 mg l?1) was degraded within 42 h at pH 5 and 30 °C. The biodegradation kinetics of CV corresponded to the pseudo first-order rate model with a rate constant of 0.046 h?1. UV–visible and Fourier transform infrared spectroscopy (FTIR) were used to identify degradation metabolites. Which further confirmed by LC-MS analysis, indicating that CV was biodegraded to N,N-dimethylaminophenol and Michler’s ketone prior to these intermediates being further degraded. Finally, the ability of B. vietnamiensis C09V to remove CV in wastewater was demonstrated.  相似文献   

16.
The degradation of bifenthrin (BF) and chlorpyrifos (CP), either together or individually, by a bacterial strain (CB2) isolated from activated sludge was investigated. Strain CB2 was identified as belonging to genus Pseudomonas based on the morphological, physiological, and biochemical characteristics and a homological analysis of the 16S rDNA sequence. Strain CB2 has the potential to degrade BF and CP, either individually or in a mixture. The optimum conditions for mixture degradation were as follows: OD600nm = 0.5; incubation temperature = 30°C; pH = 7.0; BF-CP mixture (10 mg L?1 of each). Under these optimal conditions, the degradation rate constants (and half-lives) were 0.4308 d?1 (1.61 d) and 0.3377 d?1 (2.05 d) for individual BF and CP samples, respectively, and 0.3463 d?1 (2.00 d) and 0.2931 d?1 (2.36 d) for the BF-CP mixture. Major metabolites of BF and CP were 2-methyl-3-biphenylyl methanol and 3,5,6-trichloro-2-pyridinol, respectively. No metabolite bioaccumulation was observed. The ability of CB2 to efficiently degrade BF and CP, particularly in a mixture, may be useful in bioremediation efforts.  相似文献   

17.
Organic pollutants present in the soil of a microcosm containing pulp and paper mill black liquor were extracted with hexane/acetone (1:1 v/v) to study the biodegradation and detoxification potential of a Bacillus sp. gas chromatography-mass spectroscopic (GC-MS) analysis performed after biodegradation showed formation of simpler compounds like p-hydroxyhydrocinnamic acid (retention time [RT] 19.3 min), homovanillic acid methyl ester (RT 21.6 min) and 3,5-dimethoxy-p-coumaric alcohol (RT 24.7 min). The methyltetrazolium (MTT) assay for cytotoxicity, 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior and alkaline comet assay for genotoxicity were carried out in the human hepatocarcinoma cell line HuH-7 before and after bacterial treatment. Bioremediation for 15 days reduced toxicity, as shown by a 139-fold increase in black liquor’s LC50 value, a 343-fold reduction in benzo(a)pyrene equivalent value and a 5-fold reduction in olive tail moment. The EROD assay positively correlated with both the MTT and comet assays in post biodegradation toxicity evaluation.  相似文献   

18.
In this study, “Quick, Easy, Cheap, Effective, Rugged and Safe” ‘QuEChERS’ method was modified for the determination of 36 pesticides fortified at (0.01–1.0) mg kg?1 in three vegetables and a fruit (lettuce, carrot, tomatoes and pineapples respectively) from Ghana. The method involved extraction with acetonitrile, phase separation with primary secondary amine and magnesium sulfate; the final injection solution was reconstituted in ethyl acetate. Organochlorine and synthetic pyrethroids residues were detected with electron capture detector whereas organophosphorus, pulsed flame photometric detector was used. The recoveries at different concentration levels (0.01, 0.1 and 1.0 mg kg?1) were in the range of 83% and 93% with relative standard deviation ranging from 2% to 10% (n = 5) and the coefficient of determination (R2) was greater than 0.99 for all the 36 pesticides. The method was successfully tested on 120 real samples from Accra markets and this proved to be useful for monitoring purposes particularly in laboratories that have no gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.  相似文献   

19.
A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L?1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg?1 of DDT after 18-days of treatment.  相似文献   

20.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) method for the determination of trace dioctyl sulfosuccinate (DOSS) concentrations in seawater samples has been established. The method is well suited to aquatic environment impact monitoring following application of the dispersant Corexit EC9500A. Linearity of the method was demonstrated down to 0.05 ng/mL?1 (0.05 µgL?1) DOSS in seawater, with a 2.4% relative standard deviation precision for preparation replicates. A US EPA method limit of detection of <0.02 ng/mL?1 (<0.02 µgL?1) was calculated and specificity was confirmed by monitoring of two qualifier ions at 291.1 m/z and 227.1 m/z. These transitions were confirmed by QToF analysis to be associated with the DOSS precursor ion at 421.2 m/z. For application to seawater samples and samples containing oil particulates, a practical and repeatable calibration range of 0.5 ng/mL?1 (0.5 µgL?1) to 25.0 ng/mL?1 (25.0 µgL?1) DOSS is reported. The method was shown to have excellent precision and accuracy, with a consistent ≤1.6% relative standard deviation for system suitability standards at 0.5 ng/mL?1 (0.5 µgL?1) and linear weighted (1/x) regression coefficients of determination ≥0.995. The surfactant nature of the analyte is discussed in relation to detection limit and loss of analyte. Speculation of a relationship between DOSS in association or aggregation with divalent cations, such as Ca2+ present in salt water and hard water, is suggested. The consequent effects on cell ionic balance and membrane function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号