首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t1/2) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL?1 (ED50) values of developed formulations varied from 1.31 to 2.79 mg L?1 for A. solani, and 1.60 to 3.14 mg L?1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing use of Mancozeb in lower doses.  相似文献   

2.
Controlled release nanoformulations of carbendazim (Methyl 1H-benzimidazol-2-ylcarbamate), a systemic fungicide, have been prepared using laboratory synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers. The release kinetics of carbendazim from developed controlled release (CR) formulations was studied and compared with that of the commercially available 50% Wettable Powder (WP). Further, the bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Rhizoctonia solani by the poison food technique method. The release of maximum amount of carbendazim from developed formulations was dependent on the molecular weight of PEGs and was found to increase with increasing molecular weights. The range of carbendazim release was found to be between 10th to 35th day as compared to commercial formulation which was up to 7th day. The diffusion exponent (n value) of carbendazim in water ranged from 0.37 to 0.52 in the tested formulations. The half-release (t1/2) values ranged between 9.47 and 24.20 days, and the period of optimum availability (POA) of carbendazim ranged from 9.15 to 26.63 days. Also, ED50 values of the developed formulations vary from 0.40 to 0.74 mg L?1. These formulations can be used to optimize the release of carbendazim to achieve disease control for the desired period depending on the matrix of the polymer used.  相似文献   

3.
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol–based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t1/2) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.  相似文献   

4.
Amphiphilic copolymers, synthesized from poly (ethylene glycols) and various aliphatic diacids, which self assemble into nano-micellar aggregates in aqueous media, were used to develop controlled release (CR) formulations of imidacloprid [1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine] using encapsulation technique. High solubilisation power and low critical micelle concentration (CMC) of these amphiphilic polymers may increase the efficacy of formulations. Formulations were characterised by Infrared (IR) spectroscopy, Dynamic Light Scattering (DLS) and Transmission Electron Microscope (TEM). Encapsulation efficiency, loading capacity and stability after accelerated storage test of the developed formulations were checked. The kinetics of imidacloprid release in water from the different formulations was studied. Release from the commercial formulation was faster than the CR formulations. The diffusion exponent (n value) of imidacloprid, in water ranged from 0.22 to 0.37 in the tested formulations. While the time taken for release of 50 % of imidacloprid ranged from 2.32 to 9.31 days for the CR formulations. The developed CR formulations can be used for efficient pest management in different crops.  相似文献   

5.
In the present investigation, bioefficacy of developed β-cyfluthrin formulations, utilizing laboratory synthesized poly(ethylene glycols) based amphiphilic copolymers, were evaluated against Callosobruchus maculatus (Coleoptera: Bruchidae). The bioefficacy data indicated that the formulations developed by utilizing polymers having PEG – 1500 (3c) and PEG – 2000 (3d) as the hydrophilic segment showed greater efficacy after 14 days as evident from EC50 values (2.2 and 1.58 mg L?1 respectively). Also, release from the commercial SC formulation was faster than developed formulations as the commercial formulation had the lowest EC50 value on the first day (0.51 mg L?1). The mean EC50 of the commercial formulation against C. maculatus was quite high as compared to those of developed formulations. The results suggest that depending upon the polymer matrix used, the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period. The results described in this paper are promising and provide a comparison of developed formulations with the commercial one showing an earlier degradation of β-cyfluthrin in the latter and relatively prolonged activity in the former.  相似文献   

6.
Controlled release (CR) formulations of metribuzin in Polyvinyl chloride [(PVC) (emulsion)], carboxy methyl cellulose (CMC), and carboxy methyl cellulose-kaolinite composite (CMC-KAO), are reported. Kinetics of its release in water and soil was studied in comparison with the commercial formulation (75 DF). Metribuzin from the commercial formulation became non-detectable after 35 days whereas it attained maxima between 35–49 days and became non-detectable after 63 days in the developed products. Amongst the CR formulations, the release in both water and soil was the fastest in CMC and slowest in PVC. The CMC-KAO composite reduced the rate of release as compared to CMC alone. The diffusion exponent (n value) of metribuzin in water and soil ranged from 0.515 to 0.745 and 0.662 to 1.296, respectively in the various formulations. The release was diffusion controlled with half release time (t1/2) from different controlled release matrices of 12.98 to 47.63 days in water and 16.90 to 51.79 days in soil. It was 3.25 and 4.66 days, respectively in the commercial formulation. The period of optimum availability of metribuzin in water and soil from controlled released formulations ranged from 15.09 to 31.68 and 17.99 to 34.72 days as against 5.03 and 8.80 days in the commercial formulation.  相似文献   

7.
Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.  相似文献   

8.
Controlled release formulations of β-cyfluthrin, a non-systemic, broad spectrum contact insecticide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based amphiphilic copolymers. Copolymers of polyethylene glycols of different molecular weights and various dimethyl esters, viz. dimethyl isophthalate, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of β-cyfluthrin from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 025 SC. Release from the commercial formulation was faster than with the developed CR formulations. The rate of release of encapsulated β-cyfluthrin from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of β-cyfluthrin in water ranged from 0.427 to 0.622 in the tested formulations. The release was diffusion controlled with a half-release time (t(?)) of 3.92 to 7.9 days in water from different formulations, and the period of optimum availability (POA) of β-cyfluthrin ranged from 1.4 to 20.5 days. The results suggest that the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period.  相似文献   

9.
Amphiphilic copolymers, synthesized from poly (ethylene glycols) and various aliphatic diacids, which self assemble into nano-micellar aggregates in aqueous media, were used to develop controlled release (CR) formulations of imidacloprid [1-(6 chloro-3-pyridinyl methyl)-N-nitro imidazolidin-2-ylideneamine] using encapsulation technique. High solubilisation power and low critical micelle concentration (CMC) of these amphiphilic polymers may increase the efficacy of formulations. Formulations were characterised by Infrared (IR) spectroscopy, Dynamic Light Scattering (DLS) and Transmission Electron Microscope (TEM). Encapsulation efficiency, loading capacity and stability after accelerated storage test of the developed formulations were checked. The kinetics of imidacloprid release in water from the different formulations was studied. Release from the commercial formulation was faster than the CR formulations. The diffusion exponent (n value) of imidacloprid, in water ranged from 0.22 to 0.37 in the tested formulations. While the time taken for release of 50 % of imidacloprid ranged from 2.32 to 9.31 days for the CR formulations. The developed CR formulations can be used for efficient pest management in different crops.  相似文献   

10.
In the present investigation, bioefficacy of developed β-cyfluthrin formulations, utilizing laboratory synthesized poly(ethylene glycols) based amphiphilic copolymers, were evaluated against Callosobruchus maculatus (Coleoptera: Bruchidae). The bioefficacy data indicated that the formulations developed by utilizing polymers having PEG - 1500 (3c) and PEG - 2000 (3d) as the hydrophilic segment showed greater efficacy after 14 days as evident from EC(50) values (2.2 and 1.58 mg L(-1) respectively). Also, release from the commercial SC formulation was faster than developed formulations as the commercial formulation had the lowest EC(50) value on the first day (0.51 mg L(-1)). The mean EC(50) of the commercial formulation against C. maculatus was quite high as compared to those of developed formulations. The results suggest that depending upon the polymer matrix used, the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period. The results described in this paper are promising and provide a comparison of developed formulations with the commercial one showing an earlier degradation of β-cyfluthrin in the latter and relatively prolonged activity in the former.  相似文献   

11.
In the present investigation, the bioefficacy of developed carbofuran formulations, with PEG-600 (7a, CP1) & PEG-900 (7b, CP2) @ 5, 10 and 20 ppm, along with commercial formulation of carbofuran 3G (CP0) were evaluated against the root-knot nematode, Meloidogyne incognita infecting tomato (cv. Pusa Ruby) in pot and field conditions. The bioefficacy data indicated that the formulations developed by utilizing polymers having PEG - 900 (7b) as hydrophilic segment were effective even at 14 days post inoculation (dpi) as evident from shoot and root length. Also, the reduction in penetration was found to be maximum with CP2 (3.6 - 4.6 J2s) at all concentrations compared to CP1 (6.6-16.4 J2s) and CP0 (29.3-32.6 J2s). Overall, CP2 was more effective in reducing the number of nematodes up to 14 days, compared to CP1 and CP0. Both the CR formulations (CP1 and CP2) in general significantly reduced the number of galls, when compared to CP0. However, under field conditions, lower concentrations (5, and 10 ppm) of CP2, were less effective in controlling the gall formation whereas, CP2 at 20 ppm, was most effective than other treatments. The study revealed that the developed CR formulations of carbofuran have the potential for effective management of M. incognita in tomato under field conditions.  相似文献   

12.
In the present investigation, the bioefficacy of developed carbofuran formulations, with PEG-600 (7a, CP1) & PEG-900 (7b, CP2) @ 5, 10 and 20 ppm, along with commercial formulation of carbofuran 3G (CP0) were evaluated against the root-knot nematode, Meloidogyne incognita infecting tomato (cv. Pusa Ruby) in pot and field conditions. The bioefficacy data indicated that the formulations developed by utilizing polymers having PEG – 900 (7b) as hydrophilic segment were effective even at 14 days post inoculation (dpi) as evident from shoot and root length. Also, the reduction in penetration was found to be maximum with CP2 (3.6 – 4.6 J2s) at all concentrations compared to CP1 (6.6 – 16.4 J2s) and CP0 (29.3 – 32.6 J2s). Overall, CP2 was more effective in reducing the number of nematodes up to 14 days, compared to CP1 and CP0. Both the CR formulations (CP1 and CP2) in general significantly reduced the number of galls, when compared to CP0. However, under field conditions, lower concentrations (5, and 10 ppm) of CP2, were less effective in controlling the gall formation whereas, CP2 at 20 ppm, was most effective than other treatments. The study revealed that the developed CR formulations of carbofuran have the potential for effective management of M. incognita in tomato under field conditions.  相似文献   

13.
Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t1/2) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.  相似文献   

14.
Controlled release (CR) formulations of carbofuran and imidacloprid were prepared employing polyvinyl chloride and carboxymethyl cellulose (CMC) and their bioefficacy was evaluated against the aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. The CR formulations of carbofuran and imidacloprid provided better or equal control of the pests than commercial formulations. CMC-based formulation provided a superior control of both the pests. The Imida-CMC, which showed the lowest population of leaf hopper (10.50 leafhopper/100 cl), provided significantly superior control among all treatments after 35 days after germination (DAG). The residue of carbofuran and imidacloprid in potato tuber and soils were not detectable at the time of harvesting in any one of the formulations.  相似文献   

15.
Abstract

The effects of Thiram and 2 commercial Thiram formulations on the growth and respiration of rhizobia were tested to compare the extent of bacteriostasis under controlled conditions. Although bacteriostasis was measurable at all concentrations tested, liquid cultures grew to maximum optical density in Thiram suspensions containing less than 10 μg/ml. Percentage germination, root elongation, and subsequent nodulation by R. meliloti of 2 cultivars of alfalfa, were determined in thiram suspensions to determine potential physiological effects of the fungicide on the host plant. Conditions were identified which produced enhancement or inhibition of germination, root elongation and development of nodular nitrogenase activity. At concentrations of the fungicide recommended for seed application, only minor, temporary bacteriostasis was observed as a possible negative effect while germination rates of fungi‐contaminated seed were markedly increased.  相似文献   

16.
In order to make the judicious use of thiram fungicide and to exploit the potential of agri-polymers, we have developed the starch- poly(acrylamide) and starch-poly(acrylic acid) based agrichemical delivery system (hydrogels) for its controlled and sustained release. Polymeric networks have been prepared by using N,N'-methylenebisacrylamide (N,N-MBAAm) as crosslinker and ammonium persulfate (APS) as initiator and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and swelling studies. Release dynamics of thiram fungicide from polymeric matrices has been studied for the evaluation of the diffusion mechanism and diffusion coefficients. It has been established that Non-Fickian diffusion mechanism has occurred for the release of thiram from these polymeric matrices. Furthermore, the initial rate of diffusion of thiram from these polymeric matrices is more as compared to the late stages of diffusion, which is analogous to the trends obtained for the diffusion of water molecules from these polymer matrices.  相似文献   

17.
Controlled release (CR) formulations of carbofuran and imidacloprid were prepared employing polyvinyl chloride and carboxymethyl cellulose (CMC) and their bioefficacy was evaluated against the aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. The CR formulations of carbofuran and imidacloprid provided better or equal control of the pests than commercial formulations. CMC-based formulation provided a superior control of both the pests. The Imida-CMC, which showed the lowest population of leaf hopper (10.50 leafhopper/100 cl), provided significantly superior control among all treatments after 35 days after germination (DAG). The residue of carbofuran and imidacloprid in potato tuber and soils were not detectable at the time of harvesting in any one of the formulations.  相似文献   

18.
The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.  相似文献   

19.
The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in lignin-based granules with different sizes to obtain controlled release formulations (CRFs) and reduce water pollution risk. Kinetics release tests in water and soil showed that the release rate of both from CRFs diminished in comparison to technical products. A linear correlation was obtained between the time taken for 50% of the active ingredient to be released (T50) into water and granule size of the CRFs. Besides, a linear correlation was reached between T50 values in water and soil. Mobility experiments carried out in calcareous soil show that the use of lignin-based CRFs reduces the presence of both herbicides in the leachate compared to the technical grade products. The set of experiments developed in this research can be useful to design, prepare and evaluate formulations with CR properties which can reduce the pollution derived from the use of herbicides.  相似文献   

20.
An encapsulation system was developed and designed to give long-lasting effectiveness of the insect growth regulator cyromazine. Cyromazine was incorporated in lignin-poly (ethylene glycol) (PE) controlled-release formulations by means of a melting process. The basic formulation [lignin (65%)–PE (20%)–cyromazine (15%)] was coated in a Wurster-type fluidized-bed equipment using two different amounts of ethylcellulose. That of the highest one was modified by the addition of a plasticizer, dibutyl sebacate (DBS). The effect on cyromazine release rate caused by the incorporation of ethylcellulose and DBS in lignin-PE formulation was studied by immersion of the granules in water under static conditions. Using an empirical equation, the time taken for 50% of the active ingredient to be released into water (T50) was calculated. From the analysis of the T50 values, the influence of ethylcellulose appears clearly defined, observing a delay in release rate of cyromazine with respect to the basic lignin-PE formulation. In addition, the granules coated with ethylcellulose and the plasticizer lead the slowest release rate into water. The release of cyromazine into water is controlled by a diffusion mechanism. The thickness and permeability of the coating film are the most important factors that affect cyromazine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号