首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Laboratory tests were conducted with 14 insecticides applied to a sandy loam to determine whether these materials caused any effects on microbial activities related to soil fertility. The ammonification of soil native organic nitrogen was not inhibited by any of the insecticide treatments. Some insecticides showed an effect on nitrification during the second week of incubation which subsequently recovered to levels similar to those obtained in the controls. There was a significant effect on denitrification in a number of treated samples. However, recovery of denitrifying capacity was rapid. This recovery indicated that the indigenous soil microorganisms can tolerate the chemicals used for control of insect pests. No significant inhibition of sulfur oxidation was observed. Results indicated that the insecticide treatments at the level tested were not drastic enough to be considered deleterious to soil microbial activities important to soil fertility.  相似文献   

2.
Abstract

With the exception of EPTC, herbicide treatments showed inhibitory effects on bacterial colony counts in a sandy loam soil for the first week. Monolinuron and simazine were stimulatory to the growth of fungi in the organic soil after 2 wk. None of the herbicide treatments affected nitrification during the first week of incubation. Except the treatment of EPTC in organic soil, all herbicides inhibited nitrification after 2 wk in both soils. All herbicide treatments stimulated SO4 formation during the 8‐wk period in the sandy loam soil. Simazine and tridiphane also stimulated sulfur oxidation after 4 wk in an organic soil. With the exception of EPTC and nitrapyrin, no significant inhibitory effect on the amount of biomass‐C was observed in the organic soil. A stimulatory effect on denitrification was observed with EPTC for 2 wk and monolinuron for 1 wk in the sandy loam soil and with simazine and tridiphane after 2 wk in the organic soil. It is apparent that the indigenous soil microorganisms can tolerate the effects of the chemicals for control of soil weeds.  相似文献   

3.
Abstract

A laboratory study was conducted to examine the effects of five insecticides on microbial and enzymatic activities important to fertility in sandy soil. Cyfluthrin significantly increased bacterial populations after 2 wks. Imidacloprid showed an inhibitory effect on fungal numbers after 2 wks incubation while the others did not affect fungal population. No inhibitory effect was observed on nitrification of soil indigenous nitrogen. All treatments stimulated S‐oxidation after 4 wks. With the exception of cyfluthrin and imidacloprid after 2 wks, denitrification in sandy soil indicated that all treatment inhibited denitrification throughout the experiment. No inhibitory effects on biomass‐c were observed during 2‐wk periods. An inhibitory effect was observed on amylase after 1 wk while significant recovery was observed after 3 wks. With the exception of HgCl2, no effect was observed on reducing sugar formation for 2 wks with all treatments. Formazan formation resulting from dehydrogenase activity was significantly greater with tebupirimphos and Aztec for 1 wk. All treatments supressed phosphatase activity for 1 wk, while none of the treatments suppressed phosphatase activity after 2 wks. Amitraz, tebupirimphos and Aztec inhibited urease activity for 1 wk. With the exception of tebupirimphos, no treatments affected N2‐fixation in soil. Although short‐lived inhibitory effects on activities of microbes and enzymes were caused by the insecticides, the soil indigenous microbes can tolerate the chemicals used for control of soil pests.  相似文献   

4.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

5.
The present study reports the effect of surfactants (rhamnolipids and triton X-100) on biodegradation of atrazine herbicide by strain A6, belonging to the genus Acinetobacter. The strain A6 was able to degrade nearly 80 % of the 250-ppm atrazine after 6 days of growth. The bacterium degraded atrazine by de-alkylation process. Bacterial cell surface hydrophobicity as well as atrazine solubility increased in the presence of surfactant. However, addition of surfactant to the mineral salt media reduced the rate and extent of atrazine degradation by decreasing the bioavailability of herbicide. On the contrary, addition of surfactant to atrazine-contaminated soil increased the rate and extent of biodegradation by increasing the bioavailability of herbicide. As compared to triton X-100, rhamnolipids were more efficient in enhancing microbial degradation of atrazine as a significant amount of atrazine was removed from the soil by rhamnolipids. Surfactants added for the purpose of hastening microbial degradation may have an unintended inhibitory effect on herbicide degradation depending upon contiguous condition, thus highlighting the fact that surfactant must be judiciously used in bioremediation of herbicides.  相似文献   

6.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

7.
Atrazine and metolachlor are extensively used in Ontario, Canada for control of broadleaf weeds and annual grasses in corn. Conservation tillage may alter the physical and biological environment of soil affecting herbicide dissipation. The rate of dissipation of these two herbicides in soil from conventional, ridge and no-tillage culture was followed. Herbicide dissipation was best described by first order reaction kinetics. Half life, the time for herbicide residues to dissipate to half their initial concentration, was unaffected by tillage. Half life for atrazine and metolachlor was similar and ranged from 31 to 66 d. The rate of dissipation decreased in dry years when soil moisture content was low. In a dry year, herbicide residues during the growing season were significantly greater on ridge tops than in the other tillage treatments. However, after harvest no differences in herbicide residues were detected among tillage treatments. Residues of atrazine (6 to 9% of applied) and metolachlor (4 to 6%) were detected in soil before planting a year after application. De-ethyl atrazine, the primary degradation product of atrazine, increased in concentration during the growing season with the greatest concentrations measured at harvest and in years when atrazine dissipated fastest. De-ethyl atrazine one year after application accounted for about 12% of the remaining triazine residue. These herbicide residues would not be phytotoxic to subsequent crops but are a potential source for leaching to ground and surface waters.  相似文献   

8.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

9.
Abstract

Effects of the herbicide metsulfuron‐methyl on soil microorganisms and their activities in two soils were evaluated under laboratory conditions. Measurements included their populations, soil respiration, and microbial biomass. In the clay soil, bacterial populations decreased with increasing concentration of metsulfuron‐methyl during the first 9 days of incubation but exceeded that of the control soil from day 27 onward. In the sandy loam soil, the herbicide reduced bacterial populations during the first 3 days after application, but these increased to the level of untreated controls after 9 days’ incubation. Fungal populations in both soils increased with increasing metsulfuron‐methyl concentrations, especially in the sandy loam soil. CO2 evolution was stimulated in both soils in the presence of the herbicide initially, but decreased during days 3 to 9 of the incubation period before increasing again afterward. The presence of metsulfuron‐methyl in the soil increased microbial biomass, except in sandy loam soil at the first day of incubation.  相似文献   

10.
Mineralization of aged atrazine and mecoprop in soil and aquifer chalk.   总被引:1,自引:0,他引:1  
The effect of ageing on the bioavailability and sorption of the herbicides atrazine and mecoprop was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. The herbicides were incubated in sterile soil or chalk up to 3 months prior to inoculation with 5 x 10(7) cells g(-1) (dry weight) of a mecoprop degrading highly enriched culture (PM) or 1 x 10(9) cells g(-1) (dry weight) of the atrazine degrading Pseudomonas sp. strain ADP. As a measure of the bioavailable residues accumulated 14CO2 was measured for 2 months. In both soil and chalk ageing limited the rate of atrazine mineralization, and in chalk the extent of mineralization was reduced as well. The fraction of sorbed atrazine in the soil ranged between 50% and 62%, whereas a maximum of 12% was sorbed in chalk. No impact on the mineralization of aged mecoprop was seen as no sorption of this herbicide on either soil or chalk was measured.  相似文献   

11.
Abstract

Greenhouse studies were conducted to determine the influence of waste‐activated carbon (WAC), digested municipal sewage sludge (DMS), and animal manure on herbicidal activity of atrazine [2‐chloro‐4‐(ethylamino)‐6‐(isopropylamino)‐s‐trazine] and alachlor [2‐chloro‐2’,6'‐diethyl‐N‐(methoxymethyl)acetanilide] in a Plainfield sandy soil. Amendments generally reduced bioactivity against oat (Avena sativa L.) and Japanese millet (E. crus‐galli frumentacea). The extent to which herbicide phytotoxicity was inhibited depended upon the application rate and the kind of soil amendment. WAC, applied at the loading rate of 2.1 mt C/ha, showed a significant inhibitory effect on both herbicides. In DMS‐ and manure‐amended soil, the reduction of atrazine activity was not significant at the rate of 8.4 mt C/ha, but reduction of alachlor activity was significant at the rate of 4.2 mt C/ha. Despite inhibition of herbicidal activity, the ED50 of atrazine and alachlor was below 2 ppm in most of the amendment treatments. Before adopting carbon‐rich waste amendments as management practices for controlling pesticide leaching in coarse‐textured soils, further studies are needed to characterize how alterations in sorption, leaching and degradation may affect herbicidal activity.  相似文献   

12.

The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N 2-ethyl-N 4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L?1). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R 2 ≥ 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06–0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

13.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

14.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

15.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

16.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

17.
Half-lives (t1/2) of two soil incorporated s-triazines (atrazine and prometon) and two thiocarbamate (EPTC and triallate) herbicides were determined in relation to soil moisture content in two California soils. Treated soils were incubated at three moisture levels in aerated glass vials at 25 +/- 1 degree C and were analyzed at 0, 7, 16, 28, 56 and 112 day intervals. Loss of herbicides in all treatments followed first-order kinetics. The t1/2-values of all herbicides decreased with increasing soil moisture and followed an empirical equation, t1/2 = aM(-b) (where t1/2 is half-life; M the moisture content; and a and b are constants). Soil moisture had a greater effect on carbamates than on s-triazines . Prometon exhibited the longest half-life in both soils, whereas EPTC was least persistent in one soil and atrazine in another. The t1/2-values for atrazine, prometon, EPTC, and triallate with medium moisture levels and 10 microg/g concentration were 34.6, 43.2, 25.4 and 38.1 days in sandy loam and 26.5, 44.4, 44.1 and 25.9 days in loamy sand, respectively. Disappearance of 50% of the applied concentrations of most of the herbicide-soil combinations (except EPTC and triallate in one soil) took longer for lower initial concentrations (1 microg/g) than for higher concentrations (10 microg/g).  相似文献   

18.
Abstract

Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler‐irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47‐mm rain falling in a 2‐hour event 24 hours after application of alachlor (2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)‐acetamide) and atrazine (6‐chloro‐N‐ethyl‐N‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its’ solubility were observed. When the herbicides were applied in 64000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally‐treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

19.

Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004–2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [μg kg?1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June–Sept, 2004, 2005) the growing season. In contrast, mean concentrations (μg L?1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 μg kg?1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

20.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号