首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of this study was to determine radionuclide and trace element concentrations in bottom-feeding fish (catfish, carp, and suckers) collected from the confluences of some of the major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG) and the potential radiological doses from the ingestion of these fish. Samples of muscle and bone (and viscera in some cases) were analyzed for 3H, 90Sr, 137Cs, totU, 238Pu, 239,240Pu, and 241Am and Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Most radionuclides, with the exception of 90Sr, in the muscle plus bone portions of fish collected from LANL canyons/RG were not significantly (p < 0.05) higher from fish collected upstream (San Ildefonso/background) of LANL. Strontium-90 in fish muscle plus bone tissue significantly (p < 0.05) increases in concentration starting from Los Alamos Canyon, the most upstream confluence (fish contained 3.4E-02 pCi g-1 [126E-02 Bq kg-1]), to Frijoles Canyon, the most downstream confluence (fish contained 14E-02 pCi g-1 [518E-02 Bq kg-1]). The differences in 90Sr concentrations in fish collected downstream and upstream (background) of LANL, however, were very small. Based on the average concentrations (+/- 2SD) of radionuclides in fish tissue from the four LANL confluences, the committed effective dose equivalent from the ingestion of 46 lb (21 kg) (maximum ingestion rate per person per year) of fish muscle plus bone, after the subtraction of background, was 0.1 +/- 0.1 mrem y-1 (1.0 +/- 1.0 microSv y-1), and was far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem y-1 (1000 microSv y-1). Of the trace elements that were found above the limits of detection (Ba, Cu, and Hg) in fish muscle collected from the confluences of canyons that cross LANL and the RG, none were in significantly higher (p < 0.05) concentrations than in muscle of fish collected from background locations.  相似文献   

2.
Abstract

This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p<0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% on LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y‐1 (2.2 μSv y‐1), deer bone = 3.8 mrem y‐1 (38 μSv y‐1), elk muscle = 0.12 mrem y‐1 (1.2 μSv y‐1), and elk bone = 1.7 mrem y‐1 (17 μSv y‐1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y‐1 (1000 μSv y‐1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E‐06, which is far below the Environmental Protection Agency upper level guideline of 1E‐04.  相似文献   

3.
This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p < 0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% of LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y-1 (2.2 microSv y-1), deer bone = 3.8 mrem y-1 (38 microSv y-1), elk muscle = 0.12 mrem y-1 (1.2 microSv y-1), and elk bone = 1.7 mrem y-1 (17 microSv y-1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y-1 (1000 microSv y-1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E-06, which is far below the Environmental Protection Agency upper level guideline of 1E-04.  相似文献   

4.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

5.
One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239,240Pu, and 241Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN fromLANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

6.
This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L?1 and from 2.44 to 29.7 ng Sn g?1 weight per weight (w/w), respectively. Concentrations in the TBT‐contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g?1 w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg?1. Additionally, the water samples were assessed for androgenic activity with an MCF7‐AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng‐dihydrotestosterone per litre water (ng‐DHT L?1). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.  相似文献   

7.
Yang R  Jing C  Zhang Q  Wang Z  Wang Y  Li Y  Jiang G 《Chemosphere》2011,83(6):862-867
High mountains may act as cold traps for globally transported persistent organic pollutants (POPs) and mercury (Hg). In the present study, 60 fish samples were collected from eight alpine lakes across the Tibetan Plateau. Concentrations of polybrominated diphenyl ethers (PBDEs), total mercury (HgT) and methyl mercury (MeHg) were quantified in the fish muscle tissues to improve the understanding of pollution status and factors regulating the transport and fate of these contaminants on the Plateau. The results showed that lake-averaged ∑14PBDEs concentration was between 0.09 ng g−1 dw and 4.32 ng g−1 dw, which was lower than those reported for European mountains. The total mercury concentration in individual fish ranged from 243 to 2384 ng g−1 dw, and that of MeHg from 131 to 1610 ng g−1 dw, which is much higher than those reported in other mountain fish. The spatial variation of PBDEs and mercury in the Plateau is largely controlled by the specific meteorological patterns.  相似文献   

8.
Organochlorine pesticides were determined in water and sediment samples collected from the littoral zone of Lake Prespa, as well as from its three main tributaries (the rivers Golema, Brajcinska and Kranska), during the period 2004 to 2006. In addition, muscle tissue samples of barbus fish (Barbus prespensis Karaman, 1928) collected from the littoral zone of Lake Prespa were also analysed. The obtained results give an overview of the contamination levels of these problematic compounds at their potential sources in the river mouths, in the potentially affected, species-rich littoral section of the lake and in the muscle tissue of one selected fish species, collected near the rivers’ deltas. Special attention was paid to the presence of some DDT metabolites (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′–DDE); (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDD) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDT). The extraction of pesticides from water samples was done by liquid-liquid partition in dichloromethane. For the sediment and fish tissue we used solid-liquid extraction. The extracted residues were analyzed on a gas chromatograph equipped with an electron capture detector (GC-ECD). The results of the respective studies indicated the presence of DDT metabolic forms in the samples of the three analysed matrixes. The highest levels of presence for these pollutants were found in the muscle tissue of the fish samples. The total DDTs content in the analysed muscle tissue samples range from 11.67 to 13.58 μg kg?1of fresh tissue. The average total DDTs content for the sediment samples were within the range of 2.32 to 4.17 μg kg?1 of dry sediment. Higher DDT metabolites content were found in the sediments collected from the rivers than in the samples from the littoral zone. The lowest average total concentrations of DDTs, on the other hand, were recorded in the water samples and ranged between 0.036 and 0.057 μg L?1. The obtained results indicated that the dominant metabolic form in the samples of the three investigated matrixes (water, sediment and fish tissue) from Lake Prespa was p,p′-DDE. There was a very good linear correlation in this study between the content of DDT's (total DDT metabolites) detected and the percentage of total organic material in the sediment. The detected concentrations are clearly below the toxicity thresholds; consequently, severe effects on the endemic species of Lake Prespa are not very likely.  相似文献   

9.
Liang P  Shao DD  Wu SC  Shi JB  Sun XL  Wu FY  Lo SC  Wang WX  Wong MH 《Chemosphere》2011,82(7):1038-1043
To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = −0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg−1 (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg−1 week−1, which was lower than the corresponding WHO limits (500 μg kg−1 and 1.6 μg kg−1 week−1).  相似文献   

10.
This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05–3.01 mg?kg?1 wet weight (w. wt) and 8.41–22.76 mg?kg?1 dry weight (d. wt), respectively. In addition, the As content was positively correlated (p?<?0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ 15N. The slope of the regression (?0.066 and ?0.078) of the log transformed As concentrations and δ 15N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10?4) stipulated by the USEPA.  相似文献   

11.
Ciguatera is food poisoning caused by human consumption of reef fish contaminated with ciguatoxins (CTXs). The expanding international trade of tropical fish species from ciguatera-endemic regions has resulted in increased global incidence of ciguatera, and more than 50 000 people are estimated to suffer from ciguatera each year worldwide. The Republic of Kiribati is located in the Pacific Ocean; two of its islands, Marakei and Tarawa, have been suggested as high-risk areas for ciguatera. The toxicities of coral reef fish collected from these islands, including herbivorous, omnivorous and carnivorous fish (24% [n = 41], 8% [n = 13] and 68% [n = 117], respectively), were analyzed using the mouse neuroblastoma assay (MNA) after CTX extraction. The MNA results indicated that 156 fish specimens, or 91% of the fish samples, were ciguatoxic (CTX levels >0.01 ng g−1). Groupers and moray eels were generally more toxic by an order of magnitude than other fish species. All of the collected individuals of eight species (n = 3-19) were toxic. Toxicity varied within species and among locations by up to 10 000-fold. Cephalapholis argus and Gymnothorax spp. collected from Tarawa Island were significantly less toxic than those from Marakei Island, although all individuals were toxic based on the 0.01 ng g−1 threshold. CTX concentrations in the livers of individuals of two moray eel species (Gymnothorax spp., n = 6) were nine times greater than those in muscle, and toxicity in liver and muscle showed a strong positive correlation with body weight. The present study provides quantitative information on the ciguatoxicity and distribution of toxicity in fish for use in fisheries management and public health.  相似文献   

12.
Atmospheric aerosols have been collected at four sites around Japan during 2000. From systematically monitoring the major (Na, Mg, Al, K, Ca, and Fe) and trace (Rb and Sr) elements, along with the Sr isotope composition, we have tried to estimate the contribution of long-range-transported Asian dust (“Kosa”) to the atmospheric aerosols.The results are summarized as follows:(1) The concentration of each element in the aerosols increased during the “Kosa” period. The increase was particularly obvious in samples collected on 8 April 2000, when the “Kosa Phenomenon” was observed at all the sampling sites in Japan, 2 days after a very heavy dust storm had occurred in China.(2) The Rb–Sr isotopic diagram shows a two-component mixing relationship: one with a high 87Sr/86Sr ratio and a high 87Rb/86Sr ratio, and the other with a low 87Sr/86Sr ratio and a low 87Rb/86Sr ratio. There is a significant difference between that of the expected end member of the Asian dust and that of the reported Asian loess, which is thought to be the possible source of the components of the “Kosa”, although the lower component is consistent with the local component at Wako.(3) Plots of the 87Sr/86Sr ratio vs the Ca/Al and Sr/Al ratios support a two-component mixing suggested by the Rb–Sr systematics, and they indicate that the contributing continental soil components to the “Kosa” aerosols should be composed of the silicate fraction of Asian loess.(4) The discrepancy in the Rb–Sr systematics between the expected end member and the possible sources may be caused by the dissolution of the Ca-bearing minerals via long-range dust transport, or by a combination of source characteristics and grain size separation.  相似文献   

13.
Halogenated persistent organic pollutants [polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)] along with total lipid, were measured in the liver and muscle of three species of deep water fish (black scabbard, black dogfish (liver only) and roundnose grenadier) collected from the Rockall fishing area, to the west of Scotland, between 2006 and 2008. Both contaminant groups were detected in the muscle and liver, with concentrations of PCBs being higher than PBDEs. There were no significant differences in the PCB or PBDE concentrations between the three species, or different sampling locations in the Rockall fishing area. PCB concentrations (ΣICES (International Council for the Exploration of the Sea)7 PCBs) greater than 500 μg kg−1 lipid weight were found in 26 of the 106 liver samples. PCB concentrations were compared to OSPAR assessment criteria, concentrations were above background but below Environmental Assessment Criteria. Estimated Toxic Equivalent (TEQ) concentrations, calculated using published models, in the fish muscle and liver indicated that consumption of deep water fish is unlikely to represent a risk to human health. The high squalene content in some of the black dogfish liver necessitated an additional clean-up step, involving gel permeation chromatography, when analyzing for PBDEs. Concentrations of PBDEs were low with many congeners being below detection limits, particularly in the muscle. There are currently no assessment criteria available for PBDEs. Furthermore, there is only very limited data on PBDEs in deep water fish. However, the concentrations observed in this study were similar to the concentrations recently reported in Mediterranean deep water fish.  相似文献   

14.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

15.
MC analysis of biological tissue is considered to be very difficult due to the lack of validated methods. This is the primary limiting factor for monitoring potential risks in both the flesh of aquatic organisms and the aquatic ecosystem. In this study, an effective method to determine free MCs (MC-LR and MC-RR) in the muscle and liver tissues of freshwater cultured fish was developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC/MS-MS). The extraction solvent, time of extraction, eluent and purification of the extract were optimized. Various SPE cartridges were also investigated. In this optimized analytical procedure, an 85% methanol/water solution (v/v) was selected as the extraction solvent, after which the extracts were purified by removing fats and proteins; a HLB cartridge was chosen for MCs enrichment; and 90% methanol containing 0.02% formic acid/water solution (v/v) was used as the eluent. Under the optimized pretreatment conditions and instrument parameters, good recoveries of MC-LR and MC-RR were obtained at three concentrations (0.5, 1.0 and 2.0 µg g?1 dry weight (DW)), with values ranging from 92.5 to 98.3% and 92.1 to 98.6%, respectively. The method detection limit (MDL) for muscle samples was 0.5 µg kg?1 and 0.4 µg kg?1 (DW) for MC-LR and MC-RR, respectively. The MDL for the liver samples was 0.8 µg kg?1 (DW) for both MC-LR and MC-RR. The developed procedure was successfully applied to analyze MCs in the muscle and liver of fish samples collected from a Chinese freshwater aquaculture pond during bloom seasons. The MC-LR concentrations ranged from below the MDL to 4.17 µg kg?1 and the MC-RR concentrations ranged from below the MDL to 2.64 µg kg?1.  相似文献   

16.
Metals including Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in muscle tissue of 12 fish species by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold vapour-atomic absorption spectroscopy (CV-AAS). Fish were collected from Vistula River at lower course and Dead Vistula River channel in south of Baltic Sea in Poland. The fish species examined include Round Goby (Neogobius melanostomus), Crucian Carp (Carassius carassius), Bull-rout (Myoxocephalus scorpius), Tench (Tinca tinca), Bream (Abramis brama), Burbot (Lota lot), Perch (Perca perca), Roach (Rutilus rutilus), Silver Carp (Hypophthalmichthys molitrix), Pikeperch (Stizostediun lucioperca), Brown salmon (Salmo trutta m. Trutta) and Eel (Anguilla anguilla). The median values of metal concentrations in fresh muscle tissue of 11 fish species varied as follows: Al < 0.5-60; Ba < 0.05-0.31; Ca 120-1800; Cd < 0.05-0.096; Co < 0.10; Cr < 0.10-0.50; Cu < 0.15-0.77; Fe 1.5-21; Hg 0.0058-0.65; K 1800-4200; Mg 130-560; Mn 0.12-0.59; Na 350-840; Ni < 0.2-0.31; Pb < 0.75; Sr 0.079-2.9; Zn 3.3-23 μg/g fresh weight. The Target Hazard Quotient (THQ) values calculated in this study for Cd and Hg from muscles of fish species collected from Vistula River were low in the range of 0.4 for Hg and 0.8 for Cd.  相似文献   

17.
Metals including Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in muscle tissue of 12 fish species by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold vapour-atomic absorption spectroscopy (CV-AAS). Fish were collected from Vistula River at lower course and Dead Vistula River channel in south of Baltic Sea in Poland. The fish species examined include Round Goby (Neogobius melanostomus), Crucian Carp (Carassius carassius), Bull-rout (Myoxocephalus scorpius), Tench (Tinca tinca), Bream (Abramis brama), Burbot (Lota lot), Perch (Perca perca), Roach (Rutilus rutilus), Silver Carp (Hypophthalmichthys molitrix), Pikeperch (Stizostediun lucioperca), Brown salmon (Salmo trutta m. Trutta) and Eel (Anguilla anguilla). The median values of metal concentrations in fresh muscle tissue of 11 fish species varied as follows: Al < 0.5–60; Ba < 0.05–0.31; Ca 120–1800; Cd < 0.05–0.096; Co < 0.10; Cr < 0.10–0.50; Cu < 0.15–0.77; Fe 1.5–21; Hg 0.0058–0.65; K 1800–4200; Mg 130–560; Mn 0.12–0.59; Na 350–840; Ni < 0.2–0.31; Pb < 0.75; Sr 0.079–2.9; Zn 3.3–23 μg/g fresh weight. The Target Hazard Quotient (THQ) values calculated in this study for Cd and Hg from muscles of fish species collected from Vistula River were low in the range of 0.4 for Hg and 0.8 for Cd. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part B to view the free supplemental file.  相似文献   

18.
Background, aim, and scope  The Arctic holds large stores of minerals, and extracted materials are provided to the world’s economy; in this sense, the Arctic issue associated with mining is not local but global. In a part of the Arctic region (the Kola Peninsula, 66–70° N and 28–41° E), metal levels are generally elevated in the lake sediment. There is a question as to what results in elevated metal levels—a natural process (naturally abundant minerals) or an anthropogenic process (mining and metallurgy). In terms of solving this question, Staroe lake located on the Kola Peninsula was researched as a case study. Materials and methods  The following parameters were determined in relation with Staroe lake: (1) the current quality of the lake’s water—each 1,000-ml sample was collected at a surface point and a deep point (near the bottom layer), and the collected samples were directly analyzed after filtration; (2) atmospheric bulk deposition—bulk deposition was collected using a set of three rainwater samplers near the lake. In addition, bulk deposition was collected in a background site (250 km to the southwest of the smelter complex) as a reference; and (3) sediment profile (plus principal component analysis)—lake-bottom sediment was collected by an open-gravimetric column sampler equipped with an automatic diaphragm. After collection, the sample columns were cut at a 1-cm interval for analysis. Eigenvalues and variances by factor were calculated from the correlation coefficients. Results  The obtained data show that (1) naturally poor elements (Cu, Ni, Si, and SO4 2−) dominantly influence the lake’s water quality; (2) they are transported from the anthropogenic sources to the study lake through the atmospheric pathway; (3) mainly the contents of Cu, Ni, Sr, and Ca have influenced the sediment quality since the 1950s, corresponding to the industrial movement; and (4) Cu, Ni, and Sr originate from an anthropogenic source (smelter), and Ca originates from both natural and anthropogenic sources. Discussion  As compared with the Russian standard (San Pin 2.1.980–00), the contents of NO3 (50.3 ± 0.1 mg l−1) and particulates (2.3 ± 0.2 mg l−1) exceeded the standard levels (0.7 mg l−1 NO3 and 45 mg l−1 particulates); Staroe lake may be slightly contaminated. However, the contamination factor (comparison with the background data) implies that Staroe lake is considerably contaminated. There is a strong possibility that fine overburden detritus (<0.1 mm diameter) may be transported from an open pit to the study lake by natural forces such as wind. Although it is difficult to suppose that one factor dominantly affects the sediment quality, it follows from a factor analysis that factors 1 and 2 account for about 70% of the total variance: Factor 1 is the most dominant, and factor 2 is the second most dominant in the variability of sediment quality. It is considered that Cu, Sr, and Ni in factor 1 originate from anthropogenic sources because they are poor in sediment rocks. Conclusions  The field survey conducted in Staroe lake can give the following answers to the key objectives: (1) The present water quality is affected by Cu, Ni, Si, and SO4 2− in light of the contamination factor, and these elements originate from anthropogenic sources (the smelter and the open pit) and are transported to the lake through the atmospheric pathway; (2) the sediment profile and statistic analysis show that the lake quality has been influenced by deposition of metals since the 1950s; and (3) Cu, Ni, Sr, and Ca have influenced the sediment quality in light of the most dominant factor—Cu, Ni, and Sr originate from an anthropogenic source, whereas Ca comes from both natural and anthropogenic sources. Recommendations and perspectives  The presented lake survey shows that the dispersion of human-related pollutants via the atmospheric pathway takes place in the Arctic region. If the current pollution continues without countermeasures, the high-latitude environment may lose its original characteristics; hence, this subject is important when considering how to implement a wide range of environmental protection measures in the Arctic.  相似文献   

19.
The 87Sr/86Sr ratios in monthly precipitation in the forested basin at Kawakami, central Japan, varied seasonally from 0.709 to 0.711 in spring to as low as 0.7062 ± 0.0004 in autumn over nine years from 1987 to 1995. The seasonal variation can be explained in terms of the mixing of three sources of Sr: sea salt (87Sr/86Sr 0.70917), soluble eolian minerals originating from deserts in continental Asia ( 0.711), and biogenic materials growing on soils derived from the volcanic rock substrates in the vicinity ( 0.706). It is estimated that the contribution of sea-salt Sr into the Kawakami rain Sr is relatively constant (10 ± 5%) and that more than half of the Sr is of biogenic origin throughout the year except during spring rains when 50% of the Sr is due to the dissolution of Ca-minerals from Asian dusts. The dominant contribution of eolian components to spring rains is consistent with the high concentration of 3H, which is typical of air masses from Asia.  相似文献   

20.
The tissue and organs (muscle, brain, liver, and gill) of four species of freshwater fish from Lake Baiyangdian were analyzed for hexachlorocyclohexanes (HCHs) and dichloro-diphenyl-trichloroethanes (DDTs). The distribution characteristics were analyzed for HCHs and DDTs in various tissue and organs, which determined the health risks for humans. The research results showed that the wet weight content of all HCHs (∑HCHs) ranged from 0.05?~?14.53 ng?g?1, with a mean of 3.47 ng?g?1. The wet weight content of all DDTs (∑DDTs) ranged from ND to 8.51 ng?g?1, with a mean of 2.41 ng?g?1. For the various species of fish, the residual level of ∑HCHs was relatively higher in chub and grass carp and lowest in snakehead. The residual level of ∑DDTs was the highest in snakehead and did not exhibit a significant variance in the other three species. For the various tissues and organs, the contents of HCHs and DDTs were both highest in the fish liver, second highest in the fish gill, and lowest in the fish brain and muscle. Among the four types of isomers, the residual level of γ-HCH was relatively higher, while the residual level of α-HCH was the lowest. The content of p,p′-DDE was significantly greater to other forms of DDT and its isomer. The residual levels of HCHs and DDTs in fish were both below the national standard. However, the carcinogenic risk from the HCHs in parts of the tissue and organs of four fish species in Lake Baiyangdian exceeded the screen value threshold set by USEPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号