首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of one organic amendment consisting of an urban waste compost (UWC) was assessed on the sorption properties of the herbicide 2,4-D on four soils of different physicochemical characteristics. The soils chosen were a Typic Haphorthod (ST), a Typic Endoaquept (SR), an Entic Pelloxerert (TO), and a Typic Eutrochrept (AL). Adsorption experiments were performed on the original soils, and on mixtures of these soils with UWC at a rate of 6.25% (w/w). These mixtures were used just after preparation, and after aging for 8 and 25 weeks. 2,4-D adsorption was the highest on ST soil, whereas the lowest adsorption was for SR soil. This behavior is related to the high amount of organic matter (OM) and amorphous iron and aluminum oxides content on soil ST, whereas soil SR had the lowest OM content and specific surface area of the soils of this study. Addition of exogenous OM to soils caused an increase in the 2,4-D adsorption by three of the soils treated with UWC, with the only exception being ST soil, due to an observed decrease in its specific surface area. The adsorbed amounts of the herbicide on aged organic fertilized soils diminished in three of the amended soils, but was still greater than on unammended soils. In contrast, the ST soil showed the largest adsorption for unammended soil.  相似文献   

2.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

3.
The herbicide 2,4-D is often applied as a tank mixture in combination with other herbicide products. However, current information on 2,4-D sorption by soil is largely based on batch-equilibrium experiments without considering the competition of other herbicides for sorption sites by soil. This study quantified the effect of the herbicide propanil on the sorption of 2,4-D in soil. Results indicated that propanil competed with 2,4-D for sorption sites, particularly in soils with an organic carbon content greater than 3.6%. The decrease in 2,4-D sorption by soil, as a result of propanil competition, was most notably for herbicide concentrations that are typical of recommended field rates. We conclude that herbicide co-applications on agricultural fields have the potential to increase the mobility of herbicides in soil.  相似文献   

4.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

5.
This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2.4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 microg(1 - 1/n) g(-1) mL(1/n). First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

6.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

7.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

8.
Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.  相似文献   

9.
This article reports on methabenzthiazuron [1-(1,3-benzothiazol-2-yl)-1,3-dimethylurea] (MBT) adsorption process on six agricultural allophanic and nonallophanic soils. The effect of amendment with exogenous organic matter was also studied. Adsorption kinetic fits an hyperbolic model. MBT adsorption reached an apparent equilibrium within 2 h and followed a second-order reaction. The maximum adsorbed amounts for natural soils ranged from 32 to 145 microg g(-1). Rate constants were considered relatively low (0.27-1.5 x 10(-4) [microg g(-1)](1-n) s-1); the slow process was attributed to a combined effect of difussion and adsorption. MBT adsorption fits the Freundlich model with r values > or =0.998 at P < or = 0.001 significance levels. Kf and Freundlich exponents (l/n) ranged from 5.3 to 82.1 cm3 g(-1) and from 0.66 to 0.73, respectively. Kf values for soils with a low organic matter content were lower than that obtained from the only typical allophanic soil derived from volcanic ash under study. Lineal regression analysis between Kf and organic matter content of nonallophanic soils gave a correlation coefficient of 0.980 (P = 0.02). Dispersion of Kd values together with close values of K(OM) indicate that organic matter (OM) was the principal component responsible for MBT adsorption in unamended soils. Addition of peat decreased soil pH and increased adsorption capacity for allophanic and nonallophanic soils. Kinetic experiments showed enhancements of Xmax values and lower rate constants.  相似文献   

10.
Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N 2, N 4-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.  相似文献   

11.
This study reports on the effect of the presence of beta-cyclodextrin (beta-CD) on the adsorption and mobility of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) through soil columns. The previous application of beta-CD to the soil produced a retarded leaching of 2,4-D through the soil column, due probably to herbicide adsorption on the soil through beta-CD adsorbed. However, the application of beta-CD solution to the soil column where 2,4-D had been previously adsorbed, led to the complete desorption of the herbicide, due to the formation of water-soluble 1:1 inclusion complexes between 2,4-D and beta-CD. Beta-CD can be viewed as a microscopic organic-phase extractant. It can be an advantage to remove from soil pesticides which are able to form inclusion complexes with cyclodextrins, making them possible candidates for use in in situ remediation efforts.  相似文献   

12.
The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10-15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

13.
Abstract

The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r 2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10–15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

14.
Merini LJ  Cuadrado V  Giulietti AM 《Chemosphere》2008,71(11):2168-2172
The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.  相似文献   

15.
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.  相似文献   

16.
17.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

18.
A study was made of the adsorption-desorption of atrazine in aqueous medium in five soils with organic matter (OM) contents in the range 1.4-10.3% and also of the desorption of the herbicide in aqueous solutions of the anionic surfactant sodium dodecyl sulphate (SDS) at critical micelle concentrations (cmc) of 0.75, 1.50, 5 and 10. The adsorption and desorption isotherms in water together with the desorption isotherms in SDS solutions with concentrations of 0.75 and 1.50 cmc fit the Freundlich adsorption equation. All the desorption isotherms displayed hysteresis. The increase or reduction in hysteresis of the desorption isotherms in SDS solutions with respect to those of desorption in water depend on the SDS concentration and on the OM content of the soils. Below the cmc, SDS only increases the desorption of atrazine in the soil with the highest OM content (10.3%). However, above the cmc (5 and 10 cmc) the desorption of atrazine increases in all soils, the efficiency of desorption increasing with the OM content of the soils.  相似文献   

19.
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.  相似文献   

20.
Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号