首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.  相似文献   

2.
Kannan N  White SM  Whelan MJ 《Chemosphere》2007,66(7):1336-1345
Chemicals present in domestic wastewater can adsorb to solid phase materials during sewage treatment. If biosolids (or sewage sludge) are applied to land, these chemicals can be transferred to soil. Under some circumstances they can also be transferred to surface waters during storm events either in solution or attached to sediment. In this paper we describe the utility of the SWAT 2000 model to estimate diffuse-source surface water exposure to "down-the-drain" chemicals. The model was applied hypothetically to predict the behaviour of linear alkylbenzene sulphonate (LAS), an anionic surfactant commonly used in household detergents, in a small catchment in Bedfordshire, UK, where it has previously been successfully validated for stream flow, sediments and pesticides. LAS transfers were estimated for two scenarios: (1) realistic and (2) reasonable worst case, based on assumptions on sludge application rates and the concentration of LAS in sludge. In addition, the sensitivity of the model output to the proportion of the catchment to which sludge is applied was established. Soil wetness and the total quantity of biosolids applied were the biggest determinants of chemical transport from the catchment. The potential of SWAT as a higher-tier tool in environmental risk assessments is discussed.  相似文献   

3.
The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area.  相似文献   

4.
This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7 × 10−3 g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream.  相似文献   

5.

Agricultural pesticides transported to surface waters pose a major risk for aquatic ecosystems. Modelling studies indicate that the inlets of agricultural storm drainage systems can considerably increase the connectivity of surface runoff and pesticides to surface waters. These model results have however not yet been validated with field measurements. In this study, we measured discharge and concentrations of 51 pesticides in four out of 158 storm drainage inlets of a small Swiss agricultural catchment (2.8 km2) and in the receiving stream. For this, we performed an event-triggered sampling during 19 rain events and collected plot-specific pesticide application data. Our results show that agricultural storm drainage inlets strongly influence surface runoff and pesticide transport in the study catchment. The concentrations of single pesticides in inlets amounted up to 62 µg/L. During some rain events, transport through single inlets caused more than 10% of the stream load of certain pesticides. An extrapolation to the entire catchment suggests that during selected events on average 30 to 70% of the load in the stream was transported through inlets. Pesticide applications on fields with surface runoff or spray drift potential to inlets led to increased concentrations in the corresponding inlets. Overall, this study corroborates the relevance of such inlets for pesticide transport by establishing a connectivity between fields and surface waters, and by their potential to deliver substantial pesticide loads to surface waters.

  相似文献   

6.
Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.  相似文献   

7.
《Chemosphere》1996,32(11):2097-2113
The concentrations of pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) polychlorinated dibensofurans (PCDFs) and organochlorine and organophosphorus pesticides in water, sediments and biota from the Lake Rotorua catchment were determined to evaluate the relative significance of various contaminants and their potential sources. PCP was found in water, sediments and biota (fish and freshwater mussels) and the highest concentrations in water (3.62 μ g.L−1) and in sediments (400 ng.g−1 dry weight (DW) were found in and near a stream that had been affected by PCP contamination from a sawmill. PCDD and PCDF concentrations in all cases, except for the waters and sediments of the stream near to the sawmill, were relatively low compared to values reported in the literature for similar sites. Negligible pesticide contamination was found in the Lake Rotorua catchment. Pesticides found included low concentrations of p.p′-DDE, p.p-TDE and dieldrin in rainbow trout from the lake.  相似文献   

8.
The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.  相似文献   

9.
Water quality monitoring in reservoirs used for human water consumption, carried out by the Alentejo Regional Authorities of the Environment (south Portugal), revealed seasonal peaks of phenolic compounds above the water-quality legislation. The main objectives of this work were to identify the main phenolic compounds present in water and soil leachates, and to determine the sources of the seasonal concentrations of phenolic compounds in two catchments with different land use patterns: Roxo and Santa Clara catchments. The main phenolic compound detected was 2,4-dinitrophenol (2,4-DNP), both in stream water and soil leachates, with concentrations higher in Roxo catchment. Roxo catchment represents a larger agricultural area than Santa Clara, and it is likely that the origin of the 2,4-DNP is associated with the use of pesticides. A peak of 2,4-DNP concentrations was observed in stream water of both catchments during February, when farmers plough their fields and apply pesticides. The 2,4-DNP peak was probably caused by a precipitation event shortly after the application of pesticides, increasing their transfer from land surfaces to adjacent streams. The leaching behaviour of 2,4-DNP was strongly dependent on the type of soil and pH. In soils with high clay content and low pH, 2,4-DNP was easily adsorbed, and its runoff from the soil to adjacent streams was reduced. Ribeira de Santa Vitória, from Roxo catchment, was the only stream showing a high abundance of vegetation, and the lowest concentrations of 2,4-DNP in water. Plants may play a role in removing contaminants from stream water.  相似文献   

10.
A GIS based pesticide risk indicator that integrates exposure variables (i.e. pesticide application, geographic, physicochemical and crop data) and toxicity endpoints (using species sensitivity distributions) was developed to estimate the Predicted Relative Exposure (PREX) and Predicted Relative Risk (PRRI) of applied pesticides to aquatic ecosystem health in the Lourens River catchment, Western Cape, South Africa. Samples were collected weekly at five sites from the beginning of the spraying season (October) till the beginning of the rainy season (April) and were semi quantitatively analysed for relevant pesticides applied according to the local farmers spraying programme. Monitoring data indicate that physicochemical data obtained from international databases are reliable indicators of pesticide behaviour in the Western Cape of South Africa. Sensitivity analysis identified KOC as the most important parameter influencing predictions of pesticide loading derived from runoff. A comparison to monitoring data showed that the PREX successfully identified hotspot sites, gave a reasonable estimation of the relative contamination potential of different pesticides at a site and identified important routes of exposure (i.e. runoff or spray drift) of different pesticides at different sites. All pesticides detected during a monitored runoff event, were indicated as being more associated with runoff than spray drift by the PREX. The PRRI identified azinphos-methyl and chlorpyrifos as high risk pesticides towards the aquatic ecosystem. These results contribute to providing increased confidence in the use of risk indicator applications and, in particular, could lead to improved utilisation of limited resources for monitoring and management in resource constrained countries.  相似文献   

11.
Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a “Wet” forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of “Wet” forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.  相似文献   

12.
The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.  相似文献   

13.
Contaminated sites pose a significant threat to groundwater resources worldwide. Due to limited available resources a risk-based prioritisation of the remediation efforts is essential. Existing risk assessment tools are unsuitable for this purpose, because they consider each contaminated site separately and on a local scale, which makes it difficult to compare the impact from different sites. Hence a modelling tool for risk assessment of contaminated sites on the catchment scale has been developed. The CatchRisk screening tool evaluates the risk associated with each site in terms of its ability to contaminate abstracted groundwater in the catchment. The tool considers both the local scale and the catchment scale. At the local scale, a flexible, site specific leaching model that can be adjusted to the actual data availability is used to estimate the mass flux over time from identified sites. At the catchment scale, a transport model that utilises the source flux and a groundwater model covering the catchment is used to estimate the transient impact on the supply well. The CatchRisk model was tested on a groundwater catchment for a waterworks north of Copenhagen, Denmark. Even though data scarcity limited the application of the model, the sites that most likely caused the observed contamination at the waterworks were identified. The method was found to be valuable as a basis for prioritising point sources according to their impact on groundwater quality. The tool can also be used as a framework for testing hypotheses on the origin of contamination in the catchment and for identification of unknown contaminant sources.  相似文献   

14.
Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations.  相似文献   

15.
Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.  相似文献   

16.
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10?2, 1.87 × 10?3 and 5.70 × 10?4, respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10?4 and 1.05 × 10?4, respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.  相似文献   

17.
To determine the potential impacts of lawn-care pesticides on aquatic ecosystems, the macroinvertebrate communities of six streams were assessed using a multimetric approach. Four streams flowed through residential neighborhoods of Peachtree City, GA, USA, with differing mean property values and two reference streams were outside the city limits. A series of correlation analyses were conducted comparing stream rank from water quality and physical stream parameters, habitat assessments, benthic macroinvertebrate metric, pesticide toxicity and metal toxicity data to determine relationships among these parameters. Significant correlations were detected between individual analyses of stream rank for pesticide toxicity, specific conductance, turbidity, temperature and dissolved oxygen with benthic macroinvertebrate metrics.  相似文献   

18.
The aim of this study was to determine the potential of seven clarifying agents to remove pesticides in red wine. The presence of pesticides in wine consists a great problem for winemakers and therefore, results on pesticide removal by clarification are very useful for taking a decision on the appropriate adsorbent. The selection of an efficient adsorbent can be based on data correlating pesticide removal in red wine to pesticides' properties, given the great number and variety of pesticides used. So, this experimental work is focused on the collection of results with regard to pesticide removal by clarification using a great number of pesticides and fining agents. A Greek red wine, fortified with single solutions and mixtures of 23 or 9 pesticides was studied. The seven fining agents, used at two concentrations, were activated carbon, bentonite, polyvinylpolypyrrolidone (PVPP), gelatin, egg albumin, isinglass-fish glue, and casein. Pesticides were selected with a wide range of properties (octanol–water partition coefficient (log Kow) 2.7–6.3 and water solubility 0.0002–142) and belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the clarified fortified wine. The correlation of the clarifying agents' effectiveness to pesticide's chemical structure and properties (log Kow, water solubility) was investigated. The antagonistic and/or synergistic effects, occurring among the pesticides in the mixtures, were calculated by indices. Pesticide removal effectiveness results of the red wine were compared to those obtained from a white wine under the same experimental conditions and discussed. The order of decreasing adsorbent effectiveness (mixture of 23 pesticides) was: activated carbon 40% > gelatin 23% > egg albumin 21% > PVPP 18% > casein 12% > bentonite 7%. Isinglass showed 12% removal at the highest permitted concentration. In the case of 9 pesticides mixture, the effectiveness was quite higher but the order remained the same compared to 23 pesticides mixture. The removal of each pesticide from its single solution was generally the highest (particularly for hydrophobic pesticides). Adsorption on fining agents is increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecules.  相似文献   

19.
Rats were orally treated with mixtures of chlorinated pesticides. Hair was collected and analyzed for pesticide residues over a period of up to four weeks. Quantitative and qualitative analysis of the recovered pesticides in hair were determined using gas chromatography with electron capture detector. Results suggest that hair can be used as a biomarker for the monitoring of organochlorinated pesticide residues at low parts per billion levels. Chlorinated pesticides were also detected in human hair of environmentally exposed and occupationally exposed individuals, which indicates that hair can be used for monitoring pesticides exposure.  相似文献   

20.
We evaluated the exposure to pesticides from the consumption of passion fruits and subsequent human health risks by combining several methods: (i) experimental field studies including the determination of pesticide residues in/on passion fruits, (ii) dynamic plant uptake modelling, and (iii) human health risk assessment concepts. Eight commonly used pesticides were applied onto passion fruits cultivated in Colombia. Pesticide concentrations were measured periodically (between application and harvest) in whole fruits and fruit pulp. Measured concentrations were compared with predicted residues calculated with a dynamic and crop-specific pesticide uptake model, namely dynamiCROP. The model accounts for the time between pesticide application and harvest, the time between harvest and consumption, the amount of spray deposition on plant surfaces, uptake processes, dilution due to crop growth, degradation in plant components, and reduction due to food processing (peeling). Measured and modelled residues correspond well (r2 = 0.88-0.99), with all predictions falling within the 90% confidence interval of the measured values. A mean error of 43% over all studied pesticides was observed between model estimates and measurements. The fraction of pesticide applied during cultivation that is eventually ingested by humans is on average 10−4-10−6, depending on the time period between application and ingestion and the processing step considered. Model calculations and intake fractions via fruit consumption based on experimental data corresponded well for all pesticides with a deviation of less than a factor of 2. Pesticide residues in fruits measured at recommended harvest dates were all below European Maximum Residue Limits (MRLs) and therefore do not indicate any violation of international regulatory thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号