首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anabaena and Aulosira fertilissima showed a marked ability to accumulate DDT, fenitrothion and chlorpyrifos. Although the maximum accumulation of DDT was almost the same in both organisms, there were significant differences in their abilities to accumulate fenitrothion and chlorpyrifos. Patterns of uptake of DDT under different treatments were also similar in both Anabaena and Aulosira, but there were significant differences in the patterns of accumulation of fenitrothion between these two organisms. In Aulosira the maximum accumulation of fenitrothion was observed on the second day, whereas, in Anabaena, maximum accumulation was noticed on the first day. A completely different pattern of accumulation of chlorpyrifos was observed in Aulosira, which continued to accumulate chlorpyrifos throughout the experimental period. Bioconcentration of DDT in Anabaena and Aulosira ranged from 3 to 1568 ppm (microg g(-1)) and 6 to 1429 ppm, respectively. Bioconcentration of fenitrothion and chlorpyrifos in Anabaena varied from 53 to 3467 ppm and 7 to 6779 ppm, respectively. In Aulosira the bioconcentration varied from 100 to 6651 ppm and 53 to 3971 ppm for fenitrothion and chlorpyrifos, respectively. Anabaena and Aulosira metabolised DDT to DDD and DDE. Amounts of these DDT metabolites detected in the organisms were dependent on the concentration of treatment. DDD was the major, and DDE the minor, metabolite. These organisms were not able to metabolise the organophosphorus insecticides, fenitrothion and chlorpyrifos.  相似文献   

2.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

3.
A method based on matrix solid-phase dispersion (MSPD) was developed for quantitative extraction of three organophosphorus pesticides (OPPs) from the Mexican axolotl, Ambystoma mexicanum. The determination was carried out using high- performance liquid chromatography (HPLC) with diode array spectrophotometric UV detection (DAD). The MSPD extraction with octadecylsilyl (C18) sorbent combined with a silica gel clean-up and acetonitrile elution was optimised for chlorpyrifos, fenthion and methyl parathion. The method was validated, yielding recovery values higher than 90%. The precision, expressed as the relative standard deviation (RSD), was less than or equal to 6% in muscle samples at spiking levels of 10 and 5 ppm. Linearity was studied from 15 to 60 ppm for chlorpyrifos and fenthion, and from 7.5 to 30 ppm for methyl parathion. The limits of detection (LODs) were found to be less than or equal to 0.5 ppm.This method was applied to the analysis of samples from a chlorpyrifos-exposed axolotl, demonstrating its use as an analytical tool for toxicological studies.  相似文献   

4.
Abstract

After chlorpyrifos was applied to the basal 1 meter of elm tree trunks for control of elm bark beetles at two different application times and sites, initial chlorpyrifos residues in forest floor litter ranged from 120 to 916 μg/g depending on the application time. Residues dissipated by approximately 99% after 791 d with the DT50 from 3.9 to 59 d and DT90 from 55 to 310 d. The initial residues of chlorpyrifos in elm forest soil varied from 0.8 to 28 μg/g and were 1 to 2 μg/g at 791 d after application. The dissipation half‐lives of chlorpyrifos in fortified soil placed in the field ranged from 116 to 121 d.  相似文献   

5.
Abstract

Lorsban 15G (15% chlorpyrifos) at 1.6 and 2.2 g a.i./10 m row, and Lorsban 4E (40.7% chlorpyrifos) at 2.0 g a.i./10 m row were applied respectively to a silt loam soil as a band treatment at seeding and as a drench after seeding. The rate of disappearance of chlorpyrifos [Q,Q‐diethyl Q‐(3,5,6‐trichloro‐2‐pyridinyl) phosphorothioate] was relatively fast in the first 15 days but slowed down considerably thereafter regardless of the methods of application and application rates; and there was a statistically significant (p=0.05) linear relationship between the natural logarithm of chlopyrifos concentration and time. Based on the linear regression equations, the calculated pseudo‐first‐order rate constants were 0.041 day‐1 and 0.044 day‐1 respectively for the band treatments at 1.6 and 2.2 g a.i./10 m row; and 0.040 day‐1 for the drench. The calculated half‐lives for all three treatments were similar and they ranged frcm 15.8 days to 17.3 days. The degradation product 3,5,6‐trichloro‐2‐pyridinol (TP) was detected in soil but not 3,5/6‐trichloro‐2‐methoxypyridine (TMP). The concentration of TP increased steadily to a peak and declined thereafter. The highest mean concentration of TP was 2.21 ppm (dry wt) detected 29 days after band treatment at the high rate. After 90 days the concentration of TP decreased to 0.43 ppm (dry wt).  相似文献   

6.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

7.
Abstract

The influence of 11 formulated and technical insecticides at 10 μg/g soil on growth and activities of microorganisms was determined. The populations of bacteria and fungi initially decreased with some pesticide treatments but recovered rapidly to levels similar to or greater than those of controls after three weeks. Both formulated and technical chlordane, chlorpyrifos and cypermethrin stimulated fungal growth. No inhibition on nitrification after two wks and sulfur oxidation after three wks was observed in treatments with either grade of insecticide. The effect of different treatments on respiration was equal to or greater than that of control sample. Less effect was observed with technical insecticides than the formulated ones on microbial populations and activities in the soil.  相似文献   

8.
This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3–42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography–mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.  相似文献   

9.
Chlorpyrifos is an anticholinesterase organophosphate insecticide widely used in Argentina in the production of food derived from animal, fruit and horticultural origin and is reported as a residue within these products. Local reference values for acetyl and butyrylcholinesterase were determined in Aberdeen Angus bovine and cross bred cattle (n = 25), a requirement to be able to evaluate toxicity of commercial organophosphate and carbamate formulations. The activity of cholinesterase enzymes presented an overall mean of 2,183.00 ± 485.6 IU L?1 for erythrocyte acetylcholinesterase and 203.1 ± 42.06 IU L?1 for plasma butyrylcholinesterase, which are used as reference values for meat steers within a system of intensive production in a semi-arid region. The toxic potential of chlorpyrifos in steers of the same breeds (n = 12) was assessed applying chlorpyrifos 15.00% Tipertox® in a single therapeutic dose of 7.50 mg kg?1 by topical route. Prior to application and then on day 1 and day 21 post-application, both blood cholinesterases, serum chlorpyrifos concentration by ultra-high resolution liquid chromatography with mass detector, analysis of blood counts, total proteins, liver enzymes, urea and creatinine were evaluated. The mean plasma concentration of chlorpyrifos was 27.90 ug L?1 at 24 h. The findings indicate that the therapeutic treatment of castrated male bovines treated with chlorpyrifos, applied by pour-on according to the manufacturer's instructions, does not cause changes in the variables evaluated.  相似文献   

10.

To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L?1, from 0.016 to 6.38 mg a.i. L?1, and from 0.39 to 1.08 mg a.i. L?1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L?1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L?1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam–tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.

  相似文献   

11.
Sardar D  Kole RK 《Chemosphere》2005,61(9):1273-1280
A laboratory experiment was conducted to study the persistence and metabolism of chlorpyrifos in Gangetic Alluvial soil of West Bengal and also to evaluate their effect on the availability of the major plant nutrients (N, P and K) in soil following the application of chlorpyrifos @ 1 kg (T1), 10 kg (T2) and 100 kg (T3) a.i.ha(-1). The dissipation followed first order kinetics and the calculated half-life (T1/2) values ranged from 20 to 37 days. The primary metabolite of chlorpyrifos, 3,5,6-trichloropyridinol (TCP) was detected from 3rd day after application and was at maximum on 30th day which decreased progressively to non-detectable level (NDL) on 120th day for all the treatment doses. The secondary metabolite 3,5,6-trichloro-2-methoxy pyridine (TMP) was detected on 30th, 15th and 7th day in T1, T2 and T3 doses respectively which decreased to NDL during 90-120th day. ANOVA study revealed significant decrease in the available N and P content in soil treated with chlorpyrifos in comparison to the control set. The inhibitory effect on available N was attributable to TMP and for P it was due to the presence of TCP and TMP rather than chlorpyrifos itself as revealed by the step wise multiple regression technique. In the later stage of incubation, however the average N and P status was recovered significantly at 120 days which might be due to the disappearance of the metabolites. The variation due to time of observations or treatment doses was minimum in case of available K in soil.  相似文献   

12.
Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.  相似文献   

13.
Abstract

The degradation of 14C‐chlorpyrifos and its hydrolysis product, 3,5,6‐trichloro‐2‐pyridinol (TCP), was investigated in soil in laboratory experiments. Between 12 and 57% of the applied chlorpyrifos persisted in a variety of agricultural soils after a 4‐week incubation. Concentrations of TCP present in these soils ranged from 1 to 34% of the applied dose. Two patterns of persistence were observed. In some soils, significant quantities of TCP and soil‐bound residues were produced, but little 14CO2. In other soils, neither TCP nor soil‐bound residues accumulated, but large quantities of 14CO2 were evolved. Direct treatment of fresh samples of each of these soils with 14C‐TCP resulted in rapid mineralization of TCP to 14CO2 only in those soils in which TCP had not accumulated after chlorpyrifos treatment. The rapid mineralization of TCP in these soils was microbially mediated, but populations of soil microorganisms capable of using TCP as a sole carbon‐energy source were not detected.  相似文献   

14.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   

15.

The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

16.
17.

Iprodione (3-(3,5-dichlorophenyl)-N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) bio-assayed against fungi Alternaria brassicicola and Sclerotinia sclerotiorum was found to be highly effective for inhibiting these desapers. Inhibition of A. brassicicola was 100% up to the dose of 75 ppm and for S. sclerotiorum there was 50% inhibition for the same concentration. Formulation of the pesticide was applied @ 500 and 1000 g. a.i./ha on the cabbage crop grown in the fields. Residues in the edible sample of cabbage were analyzed by gas choromatography for the fungicide and its metabolites. The dissipation of residues of the fungicide and its bio-efficacy against two fungi are presented. It dissipated from 3.72 to 0.072 μg/g on cabbage head by 15 days after treatment. The EC50 values of iprodione were found to be 11.5 ppm and 79.4 ppm for A. brassicicola and S. sclerotiorum, respectively. Half-life of iprodione was found to be 3 days for both cabbage head and leaves. The compatibility of the fungicide with a bio agent, T. harzianum was also studied and these two were not found to be compatible.  相似文献   

18.
为明确蜡状芽孢杆菌(Bacillus cereus)混合菌株对毒死蜱的降解效果,采用正交实验的方法构建混合菌。以混合菌对毒死蜱的降解率和菌株的生长量为依据,利用单一因素实验考察了不同因素对混合菌降解毒死蜱的影响。结果表明:构建的混合菌中三菌株的体积比为1∶1∶3。在含80 mg/L毒死蜱的反应体系中,最适接菌量为8%(V/V),最适pH为7。在实验浓度下,混合菌对毒死蜱的降解符合一级动力学方程。混合菌对盐分有较高的耐受度,当反应液中氯化钠浓度在20~100 g/L之间时,混合菌对80 mg/L毒死蜱的降解率最高达61%。  相似文献   

19.

The insecticide 14C-chlorpyrifos was found mineralized in a Tunisian soil with repeated exposure to it. From this soil, a bacterial strain was isolated that was able to grow in a minimal salt medium (MSM) supplemented with 25 mg L?1 of chlorpyrifos. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In a liquid culture, the S. rubidaea strain ABS 10 was able to dissipate chlorpyrifos almost entirely within 48 h of incubation. Although the S. rubidaea strain ABS 10 was able to grow in an MSM supplemented with chlorpyrifos and dissipate it in a liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, it can be concluded that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. It can also be ascribed to other reasons such as the formation of biogenic non-extractable residues. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in controls with DT50 of 1.38 and 1.05 days, respectively.

  相似文献   

20.
Abstract

Residues of dicofol were determined on cucumber leaves and fruits under plastic house (PH) and plastic tunnels (PT). Five sprays, 8 d apart, were applied at 0.15% concentration. initial deposits on leaves were 48 and 58 ppm under PH and PT, respectively. In the last sampling date of leaves, the amounts of 191 and 135 ppm were detected under both cultures, respectively. There was a continuous increase in the initial residue after each spray. The highest amount of dicofol (401) was determined 1 d after the fifth spray under PH. The exposure to high residues may pose a risk to fieldworkers.

On cucumber fruits, residues of 0.95 and 1.60 ppm were determined 1 d after the fourth spray under PH and PT, respectively. These residues decreased after 4 d to 0.40 and 1.49 ppm, respectively. Almost no detectable residues could be determined 8 d after sprays number 4 and 5 under both cultures. All dicofol residues on the fruits were below the tolerance level of 2 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号