首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

2.
The hydrolysis of the insecticide pyraclofos in buffered solutions at pH 5.0, 7.0 and 9.0, and its sorption on four soils of different physicochemical properties were investigated. The results showed that the degradation of pyraclofos in buffered solutions followed pseudo-first-order kinetics. At 40°C, the rate constants for the hydrolysis of pyraclofos at pH 5.0, 7.0 and 9.0 were 0.0214, 0.1293, and 2.1656 d?1, respectively. Pyraclofos was relatively stable under both acidic and neutral conditions, while it was readily hydrolyzed under basic conditions. The sorption of pyraclofos on four soils was well described by the Freundlich equation. The sorption constant, K f, increased with an increase in soil organic carbon content, suggesting that organic carbon content was an important factor affecting sorption. The K oc values for Xiaoshan clay loam soil, Hangzhou I clay loam soil, Hangzhou II soil, and Fuyang silt loam soil were 30.4, 6.7, 5.3, and 7.1, respectively. These results suggest that the sorption of pyraclofos on the tested soils was relatively weak.  相似文献   

3.
A myriad of physical, chemical, and biological processes controls the fate of organic contaminants in soils. The knowledge of bioavailability of a contaminant in soil can be useful to conduct environmental risk assessment. We conducted batch equilibrium experiments to investigate the sorption of cyromazine (CA) and its metabolite melamine (MA) onto five typical soils of China belonging to suborders Ali-Perudic Ferrosols, Udic Argosols, Gleyic-Stagnic Anthrosols, Ustic Cambosols, and Udic Isohumosols. Results showed that sorption of CA and MA onto soils was linear, as indicated by the Freundlich and Langmuir models. Different sorption behaviors of CA and MA were observed on the five agricultural soils, with lgK f values (Freundlich model) of 1.6505–2.6557 and 1.632–2.549, respectively. Moreover, the K f values for CA and MA were positively correlated with soil organic matter (r?=?0.989, r?=?0.976) and significantly negatively correlated with pH (r?=??0.938, r?=??0.964). The free energy of sorption of CA and MA ranged from ?20.8 to ?23.0 kJ mol?1 and ?20.8 to ?22.8 kJ mol?1, respectively, suggesting that the sorption of CA and MA onto the soils is primarily a physical process.  相似文献   

4.
Properties related to sorption and transport of organic compounds have been determined on 126 sections of 17 cores taken in an aquifer at Columbus Air Force Base in Columbus, MS. Each core section was homogenized prior to analysis. Organic carbon content (OC), specific surface area (SA), distribution coefficient (Kd) for naphthalene, and particle size distribution were measured on each section. Hydraulic conductivity (Kh) for each section was calculated from the particle size distributions. Kh values obtained were comparable with those from earlier borehole flowmeter and pulse tracer tests. Frequency distributions for all properties were lognormal. The arithmetic means and standard deviations for all samples are: OC=0.028% (+0.031, −0.015), SA=4.02 m2/g (+3.95, −1.99), Kd=0.198 l/kg (+0.195, −0.098), Kh=0.00033 m/s (+0.00051, −0.00020). These standard deviations are asymmetrical about the mean because statistics were calculated using log-transformed data, and antilogarithms then taken to obtain the results in the units of property measurement. Variabilities, expressed as coefficients of variation, were similar for all properties. Correlations between the properties were investigated. A good correlation between naphthalene Kd and OC (r=0.78) was found, and other correlations were weak, thus indicating that organic carbon content may control sorption of nonpolar organic solutes in this low carbon aquifer. Autocorrelation (variogram) analysis indicated that, for all properties, correlation lengths were less than the distance between sample points, which were separated by about 20 m horizontally and 1 m vertically. Separate statistical analysis of two widely separated groups of wells showed the groups similar in all properties, except organic carbon. Large-scale inhomogeneity was not detected, although earlier tracer tests produced irregular plumes indicating inhomogeneity in observed solute transport. Implications of the results to site characterization, in situations where aquifers are heterogeneous on short length scales, are discussed.  相似文献   

5.

Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three- and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (K f ) and intensity (1/n), organic carbon partition coefficient (K OC ) and Gibbs free energy change (Δ G) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher K f and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the K OC and Δ G values of Carbaryl were higher in both BT and ZT than in the underlying soils, the K OC and Δ G values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils. The Carbaryl, however, had a higher LI for soils than for thatch materials. Averaged across thatch materials and soils, COrg accounted for 96, 85, and 84% variations in Carbaryl, 2,4-D, and Triclopyr adsorption, respectively. Among the COrg fractions, lignin followed by CFA and CHA accounted for greater adsorption of pesticides, especially Carbaryl. The concentration of CHA and CFA bound Fe did not correlate with K f and 1/n values of pesticides.  相似文献   

6.
Abstract

In this study, we used two biochars (BC) produced from grapevine pruning residues (BCgv) and red spruce wood (BCrs), two hydrochars (HC) from urban pruning residues (HCup) and the organic fraction of municipal solid wastes (HCuw), and two vermicomposts (VC) obtained vermicomposting digestates from buffalo manure (VCbm) and mixed feedstock (VCmf). Adsorption kinetics and isotherms of metribuzin onto these materials were performed. Sorption kinetics followed preferentially a pseudo-second-order model, thus indicating the occurrence of chemical interactions between the sorbate and the adsorbents. Adsorption constants were calculated using the Freundlich and Langmuir models. Metribuzin sorption data on BCgv and both HC fitted preferentially the Freundlich equation, whereas on the other materials data fitted both isotherms well (r?>?0.95). Metribuzin sorption capacity of the materials followed the trend BC?>?HC?>?VC. Sorption constants of metribuzin normalised per organic carbon content (KOC) on BCgv, BCrs, HCup, HCuw, VCbm and VCmf were 561, 383, 251, 214, 102 and 84?L kg?1, respectively. A significant positive correlation (P?=?0.016) was calculated between distribution coefficients (Kd) of all materials and the corresponding organic carbon contents, thus indicating a prominent role of the organic fraction of these materials in the adsorption of metribuzin.  相似文献   

7.
Sorption of three pesticides (chlorpyrifos, metalaxyl and penconazole) has been measured on a commercial clay montmorillonite and on the same mineral modified with either of two cationic-surfactant micelles. Both micelle–clay complexes, commercial names Cloisite 20A and Cloisite 30B, showed a good capacity to sorb all three pesticides from water, whereas their sorption on the natural montmorillonite was not described by an isotherm. Modelling sorption on both micelle–clay complexes showed that the Freundlich sorption constant (K F) was higher for chlorpyrifos on Cloisite 20A (K F = 7.76) than on Cloisite 30B (K F = 5.91), whereas the sorption of metalaxyl was stronger on Cloisite 30B (K F = 1.07) than on Cloisite 20A (K F = 0.57). Moreover the micelle–clay complex Cloisite 20A also showed a good affinity for penconazole, the maximum quantity adsorbed (q m) of 6.33 mg g?1 being 45% more than that on Cloisite 30B. Single-batch adsorption of each pesticide onto both micelle–clay complexes was studied using the Freundlich isotherm for chlorpyrifos and metalaxyl and the Langmuir isotherm for penconazole. The Cloisite 20A micelle–clay complex was predicted to require 23% less adsorbent to treat certain volumes of wastewater containing 30 mg L?1 chlorpyrifos, 43% more to treat metalaxyl similarly and 57% less to treat penconazole compared with Cloisite 30B.  相似文献   

8.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

9.
Abstract

The fumigant 1,3-dichloropropene (1,3-D) is considered a major replacement to methyl bromide, which is to be phased out of use in the United States by 2005. The main purpose of this study was to evaluate soil–water partitioning of 1,3-D in two California agricultural soils (Salinas clay loam and Arlington sandy loam). The partition coefficients (K d and K f ) were determined by directly measuring the concentration of 1,3-D in the solid phase (C s ) and aqueous phase (C w ) after batch equilibration. In the Salinas clay loam, the K f of cis-1,3-D in adsorption and desorption isotherms was 0.47 and 0.54, respectively, with respective values of 0.39 and 0.49 for trans-1,3-D. This slight hysteric effect suggests that a different range of forces are involved in the adsorption and desorption process. Since n was near unity in the Freundlich equation, the Freundlich isotherms can also be approximated using the liner isotherm. At 25°C, the K d of the 1,3-D isomers in both soils ranged from 0.46 to 0.56, and the K oc (organic matter partition coefficient) ranged from 58 to 70. The relatively low K d values and a K oc that falls within the range of 50–150, suggests that 1,3-D is weakly sorbed and highly mobile in these soils. Understanding the sorption behavior of 1,3-D in soil is important when developing fumigation practices to reduce the movement of 1,3-D to the air and groundwater.  相似文献   

10.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

11.
The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS?+?C and RS?+?P; PSO in CC?+?P and Elovich in CC?+?C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd) values were 116.8–369.24 (AZOXY) and 24.2–293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2Adj values were higher for the nonlinear fit (AZOXY?=?0.938–0.982; IMIDA?=?0.91–0.970) than the linear fit (AZOXY?=?0.886–0.993; IMIDA?=?0.870–0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.  相似文献   

12.

The objectives of this study were to assess sorption and desorption of tylosin, a macrolide antimicrobial chemical used in swine, cattle, and poultry production, in three silty clay loam soils of South Dakota and compare soil sorption to sand and manure sorption. The silty clay loam soils, from a toposequence in eastern South Dakota, standardized sand samples, and swine manure were used in 24-h batch sorption studies with tylosin concentrations ranging from 25 to 232 μ mole/L. Desorption from soil was conducted over a four-day period. Partition coefficients, based on the Freundlich isotherm (K f ) or K d values, were calculated. K f values for the silty clay loams were similar, not influenced by landscape position, and averaged 1350 with isotherm slopes ranging from 0.85 to 0.93. K f values for sand were dependent on solution/sand ratios and pH, ranging from 1.4 to 25.1. K d values of manure were dependent on the solution type and ranged from 840 L/kg with urine to about 175 L/kg when sorbed from water. Desorption of tylosin from each soil over the four-day period was < 0.2% of the amount added. The soils' high K f values and low desorption amounts suggest that once tylosin is in these soils, leaching to lower depths may not occur. However, this does not preclude runoff with soil eroded particles. If tylosin reaches a sand aquifer, through bypass flow or other mechanism(s), movement in the aquifer most likely would occur.  相似文献   

13.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

14.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC50 value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC50) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC50) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO2 at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

15.

Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.  相似文献   

16.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   

17.
This research evaluated the effects of the new sugarcane harvesting system (without straw burning) and soil attributes on the organic carbon (OC) accumulation and sorption of alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in highly weathered Brazilian soils. Alachlor was more likely to leach (K d,app = 1.0–7.0 L kg?1 and mean K oc,app = 174 L kg?1) than diuron (K d,app = 6.2–116.3 L kg?1 and mean K oc,app = 1789 L kg?1). The sorption coefficient (K d,app) values correlated better with soil OC contents, but the Fe-oxides also played an important role in these highly weathered soils. Sorption was enhanced in the areas without straw burning mostly due to OC accumulation that was higher in the clayey soils, but it was not enough to change their mobility classification.  相似文献   

18.
19.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

20.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号