首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L?1. The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200–250 mg L?1) and high (4 g L?1) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.  相似文献   

2.
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.  相似文献   

3.
高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。分别以石油污染土壤和焦化废水活性污泥为菌源,分离出芘降解菌和混合PAHs(菲、荧蒽和芘)降解菌共14株并对其降解性能进行对比研究。结果表明,筛选得到的菌株分别属于9个菌属,其中2种菌源共有的菌属为Mycobacterium sp.、Ralstonia sp.和Shinella sp.。芘和PAHs的高效降解菌(CP16和CM32)均属于分支杆菌属(Mycobacterium),来源于焦化废水活性污泥;菌株CP16对芘(50mg/L)的7 d降解率为74.99%,CM32对PAHs(菲50 mg/L、荧蒽和芘各10 mg/L)的7 d降解率为100%。因此,以焦化废水活性污泥为菌源更有利于获得高效的多环芳烃降解菌。  相似文献   

4.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

5.
A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L?1 neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth‐promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO‐tri. In addition, 16S rRNA gene‐denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX‐23 and Agromyces mediolanus TMX‐25 produced indole‐3‐acetic acid, whereas E. adhaerens TMX‐23 and Mesorhizobium alhagi TMX‐36 are N2‐fixing bacteria. The six‐isolated microbes were tolerant to 200 mg L?1 TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX‐5 and Microbacterium sp.TMX‐6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor.  相似文献   

6.
Abstract

Cometabolic degradation of the herbicide molinate was tested using two microorganisms, Arthrobacter sp., strain M3 and Streptomyces griseus strain M2; the latter classified on the basis of the presence of the enzymatic cofactor SF‐420. The strains M3 and M2, inoculated in a basic salts medium with glucose as carbon source and added with 100 mg L‐1 of molinate, degraded respectively 35 and 51% of the herbicide in 36 days.

Increasing concentrations of molinate, ranging from 50 to 200 mg L‐1 in glucose medium, did not affect the final ATP yield of the strain M2, but decreased the final growth yield and the ATP synthesis rate. Moreover, the onset of coenzyme SF‐420 synthesis was progressively delayed.

In contrast, surprisingly, SF‐420 final yield and production rate were increased by progressive increasing concentrations of molinate in the mineral medium.  相似文献   

7.
用低浓度SO2诱导驯化方法获得高效脱硫菌群,并用分离培养与16S rRNA基因测序技术相结合的方法鉴定菌群种属,分析驯化过程中种群结构的动态变化,同时研究分离纯菌种的脱硫性能。结果表明,从诱导驯化7 d和14 d菌液中分别分离出23株菌和22株菌,16S rRNA序列分析发现这些菌归属于13个种,其中有6个种(Rhodococcus erythropolis、Pseudomonas putida、Microbacterium oxydans、Sphingomonas koreensis、Acinetobacter junii、Acinetobacter johnsonii)对SO2-3有较强的降解能力,并在持续驯化过程中稳定的生长传代,降解产物以硫酸根为主,还有极少量的单质硫。与含混合菌的驯化菌液降解SO2-3的能力相比,单一脱硫菌的脱硫性能较弱。脱硫功能菌株及其基本特性的研究为微生物处理SO2烟气提供了丰富的菌源信息和理论基础。  相似文献   

8.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

9.
In this study the aflatoxin B1 (AFB1) removal capacity, the tolerance to salivary and gastrointestinal conditions, autoaggregation and coaggregation with pathogenic bacteria of Saccharomyces cerevisiae strains isolated from broiler feces, were evaluated. Only four of twelve isolated strains were identified as Saccharomyces cerevisiae using molecular techniques. The results obtained in AFB1 binding studies indicated that the amount of AFB1 removed was both strain and mycotoxin-concentration dependent. Therefore, a theoretical model was applied in order to select the most efficient strain to remove AFB1 in a wide range of mycotoxin concentration. The results indicated that S. cerevisiae 08 and S. cerevisiae 01 strains were the most efficient microorganisms in the mycotoxin removal. Viability on simulated salivary and gastrointestinal conditions was investigated and S. cerevisiae 08 strain showed the best results, achieving 98% of total survival whereas S. cerevisiae 01 reached only 75%. Autoaggregation and coaggregation assays showed S. cerevisiae 08 as the most appropriate strain, mainly because it was the unique strain able to coaggregate with the four bacterial pathogens assayed. Consequently, S. cerevisiae 08 is the best candidate for future in vivo studies useful to prevent aflatoxicosis. Further quantitative in vitro and in vivo studies are required to evaluate the real impact of yeast-binding activity on the bioavailability of AFB1 in poultry. However, this study could be useful in selecting efficient strains in terms of AFB1 binding and provide an important contribution to research into microorganisms with potential probiotic effects on the host.  相似文献   

10.
A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. Only one-fifth of the strains that tolerated m-toluate also degraded m-toluate. The inoculum Pseudomonas putida PaW85 was not found in the rhizosphere samples. The ability to degrade m-toluate by the TOL plasmid was detected only in species of the genus Pseudomonas. However, a few Rhodococcus erythropolis strains were found which were able to degrade m-toluate. A new finding was that Pseudomonas migulae strains and a few P. oryzihabitans strains were able to grow on m-toluate and most likely contained the TOL plasmid. Because strain specific differences in degradation abilities were found for P. oryzihabitans, separation at the strain level was important. For strain specific separation (GTG)5 fingerprinting was the best method. A combination of the single locus ribotyping and the whole genomic fingerprinting techniques with the selective partial sequencing formed a practical molecular toolbox for studying genetic diversity of culturable bacteria in oil-contaminated rhizosphere.  相似文献   

11.
A microcosm incubation study using an aquic brown soil from northeast China (a Cambisol in the UN Food and Agriculture Organization FAO Soil Taxonomy) was conducted to examine the effects of different concentrations (0, 50, 150, and 250 mg kg?1) of methamidophos (O,S-dimethyl phosphoramidothioato) on Pseudomonas, one of the most important gram-negative bacteria in soil. Amplified ribosomal DNA restriction analysis (ARDRA) was performed to study the Pseudomonas community structure, an in vitro assay was made to test the antagonistic activity of isolated Pseudomonas strains against soil-borne Rhizoctonia solani, a major member of the pathogens highly related to soil-borne plant diseases, and special primer amplification and sequencing were performed to investigate the diversity of phlD, an essential gene in the biosynthesis of 2, 4-diacetylphloroglucinol (2, 4-DAPG), which has biocontrol activity in phlD +isolates. With exposure to increasing methamidophos concentrations, the total number of soil Pseudomonas ARDRA patterns decreased significantly, but with less change in the same treatments over 1, 3, and 5 weeks of incubation. The number of isolated Pseudomonas strains with antagonistic activity against R. solani as well as the diversity and appearance frequency of the strains' phlD gene also decreased with increasing concentrations of methamidophos, especially at high methamidophos concentrations. Applying methamidophos could increase the risk of soil-borne plant diseases by decreasing the diversity of the soil Pseudomonas community and the amount of R. solani antagonists, particularly those with the phlD gene.  相似文献   

12.
Rhodococcus erythropolis IBBPo5 (KM405337) and Lysinibacillus xylanilyticus IBBPo7 (KM405338) showed good tolerance to 5% (v/v) organic solvents (alkanes, aromatics). However, 5% (v/v) alkanes (i.e., cyclohexane, n-hexane, n-decane) were less toxic for R. erythropolis IBBPo5 and L. xylanilyticus IBBPo7 cells, compared with 5% (v/v) aromatics (i.e., toluene, o-xylene, ethylbenzene). The high organic solvent tolerance of these two Gram-positive bacteria could be due to the presence in their genome of some catabolic (alkB1, todM, xylM) and trehalose-6-phosphate synthase (otsA1) genes. R. erythropolis IBBPo5 possesses three catabolic genes (i.e., alkB1, todM, xylM), while L. xylanilyticus IBBPo7 possesses only one catabolic gene (i.e., alkB1). Numerous adaptations involved in organic solvents tolerance were depicted in R. erythropolis IBBPo5 and L. xylanilyticus IBBPo7 cells exposed to 5% (v/v) alkanes and aromatics (i.e., changes in the cell growth rate, membrane permeability, cell morphology, biosurfactant emulsification index, carotenoids profile, DNA fingerprinting). Therefore, microbiological, biochemical, and DNA fingerprinting studies of the bacteria isolated from polluted environments could provide valuable information that may complement or supplement other forensic investigations.  相似文献   

13.
分别从台州和衢州某化工厂的好氧池中分离筛选得到2株苯胺降解菌TZ1和JH1,经16S rDNA测序鉴定为Comamonas sp.TZ1和Pseudomonas sp.JH1,均具有较强的苯胺降解能力,培养24 h后,可使初始浓度为800 mg/L的苯胺去除率达到96.4%~98.4%。在此基础上,按体积比1∶1将2株菌液进行混合构建了混合菌体系,进而对比考察了苯胺初始浓度、pH、盐度和重金属等环境因子对单一菌和混合菌生长量及降解苯胺效果的影响,重点探讨混合菌对不适宜生长环境的适应性及其对苯胺的降解特性。通过单一菌和混合菌对比实验发现,在适宜苯胺初始浓度、pH和盐度条件下,混合菌的生长量略高于单一菌;在不适宜生长的高浓度苯胺、pH和盐度条件下,混合菌也表现出了更强的适应性和苯胺矿化能力。Zn2+和Cr6+耐受实验则表明,对于Cr6+,混合菌表现出了更强的耐受能力,而对于Zn2+并没有表现出更强的耐受能力。  相似文献   

14.
Kim YH  Cha CJ  Engesser KH  Kim SJ 《Chemosphere》2008,73(9):1442-1447
Various substrate specificity groups of alkyl ether (AE)-degrading Actinobacteria coexisted in activated sewage sludge of a mixed wastewater treatment. There were substrate niche overlaps including diethyl ether between linear AE- and cyclic AE-degrading strains and phenetole between monoalkoxybenzene- and linear AE-degrading strains. Representatives of each group showed different substrate specificities and degradation pathways for the preferred substrates. Determining the rates of initial reactions and the initial metabolite(s) from whole cell biotransformation helped us to get information about the degradation pathways. Rhodococcus sp. strain DEE5311 and Rhodococcus rhodochrous strain 117 both were able to degrade anisole and phenetole through aromatic 2-monooxygenation to form 2-alkoxyphenols. In contrast, diethyl ether-oxidizing strain DEE5311 capable of degrading a broad range of linear AE, dibenzyl ether and monoalkoxybenzenes initially transformed anisole and phenetole to phenol via direct O-dealkylation. Compared to this, cyclic AE-degrading Rhodococcus sp. strain THF100 preferred tetrahydrofuran (265 ± 35 nmol min(-1)mg(-1) protein) to diethyl ether (<30), but it cannot oxidize bulkier AE than diethyl ether. Otherwise, 1,4-diethoxybenzene-degrading Rhodococcus sp. strain DEOB100 and Gordonia sp. strain DEOB200 transformed 1,3-/1,4-dialkoxybenzenes to 3-/4-alkoxyphenols by similar manners in the order of rates (nmol min(-1) mg(-1) protein): 1,4-diethoxybenzene (11.1 vs. 3.9)>1,4-dimethoxybenzene (1.6 vs. 2.6)>1,3-dimethoxybenzene (0.6 vs. 0.6). This study suggests that the AE-degrading Actinobacteria can orchestrate various substrate specificity responses to the degradation of various categories of AE pollutants in activated sludge communities.  相似文献   

15.
Methionine is one of the first limiting amino acids in poultry nutrition. The use of methionine-rich natural feed ingredients, such as soybean meal or rapeseed meal may lead to negative environmental consequences. Amino acid supplementation leads to reduced use of protein-rich ingredients. The objectives of this study were isolation of potentially high content methionine-containing yeasts, quantification of methionine content in yeasts and their respective growth response to methionine analogs. Minimal medium was used as the selection medium and the isolation medium of methionine-producing yeasts from yeast collection and environmental samples, respectively. Two yeasts previously collected along with six additional strains isolated from Caucasian kefir grains, air-trapped, cantaloupe, and three soil samples could grow on minimal medium. Only two of the newly isolated strains, K1 and C1, grew in minimal medium supplied with either methionine analogs ethionine or norleucine at 0.5% (w/v). Based on large subunit rRNA sequences, these isolated strains were identified as Pichia udriavzevii/Issatchenkia orientalis. P. kudriavzevii/I. orentalis is a generally recognized as a safe organism. In addition, methionine produced by K1 and C1 yeast hydrolysate yielded 1.3 ± 0.01 and 1.1 ± 0.01 mg g?1 dry cell. Yeast strain K1 may be suitable as a potential source of methionine for dietary supplements in organic poultry feed but may require growth conditions to further increase their methionine content.  相似文献   

16.
The aim of the present study was to evaluate the inhibitory effect by the cross-streak method of nine Enterococcus faecium strains isolated from faeces of healthy dogs and their treated and non-treated cell-free supernatant (CFS) by the well-diffusion test on the growth of potentially pathogenic bacteria isolated from clinical cases and aflatoxigenic Aspergillus section Flavi and the consequent aflatoxin B1 (AFB1) production. Results obtained from the cross-strake assay showed that E. faecium MF1, GJ18 and GJ40 presented the major inhibitory activity against all pathogenic strains assayed; E. faecium GJ40 produced the larger inhibitory zones (26–27 mm). Well-diffusion test results showed that the majority of the enterococci strains CFS had antimicrobial activity against the pathogenic microorganisms, especially on Gram negative indicators. Cell-free supernatant of E. faecium GJ40 was the one that produced the largest inhibition zones (14 to 21 mm) in the majority of the indicator microorganisms assayed. All supernatants treated with 10 N NaOH (pH6) showed no inhibitory effect on the indicator strain assayed. With respect to fungal inhibition, any of the CFS assayed significantly inhibited the Aspergillus strains growth. But, in general, all CFS reduced AFB1 production from 8 to 87%. The results demonstrate that enterococci isolated from healthy dog feaces produce substances with the capacity to inhibit some potential pathogenic bacteria growth and the capacity of inhibiting or reducing the AFB1 production in vitro.  相似文献   

17.
Abstract

Methoxychlor was found to be sufficiently persistant in soil and its residues were present even 18 months after the soil treatment. Saprophytes, fungi and actinomyces were unaffected by varying concentrations of methoxychlor, azotobacter however was susceptable. Soil strains isolated did not utilize methoxychlor as a sole carbon source except for 9 cultures belonging to the genera Bacillus, Acineto‐bacter and Rhodococcus which carried out the complete dechlorination, demethylation and splitting of one of methoxychlor aromatic rings. Anaerobic conditions were more favorable for methoxychlor biodegradation by soil and pure microbial cultures.  相似文献   

18.
The degradation of bifenthrin (BF) and chlorpyrifos (CP), either together or individually, by a bacterial strain (CB2) isolated from activated sludge was investigated. Strain CB2 was identified as belonging to genus Pseudomonas based on the morphological, physiological, and biochemical characteristics and a homological analysis of the 16S rDNA sequence. Strain CB2 has the potential to degrade BF and CP, either individually or in a mixture. The optimum conditions for mixture degradation were as follows: OD600nm = 0.5; incubation temperature = 30°C; pH = 7.0; BF-CP mixture (10 mg L?1 of each). Under these optimal conditions, the degradation rate constants (and half-lives) were 0.4308 d?1 (1.61 d) and 0.3377 d?1 (2.05 d) for individual BF and CP samples, respectively, and 0.3463 d?1 (2.00 d) and 0.2931 d?1 (2.36 d) for the BF-CP mixture. Major metabolites of BF and CP were 2-methyl-3-biphenylyl methanol and 3,5,6-trichloro-2-pyridinol, respectively. No metabolite bioaccumulation was observed. The ability of CB2 to efficiently degrade BF and CP, particularly in a mixture, may be useful in bioremediation efforts.  相似文献   

19.
The goal of this study was to optimize methyl parathion (O,O-dimethyl-O-4-p-nitrophenyl phosphorothioate) degradation using a strain of Escherichia coli DH5α expressing the opd gene. Our results indicate that this strain had lower enzymatic activity compared to the Flavobacterium sp. ATCC 27551 strain from which the opd gene was derived. Both strains were assessed for their ability to degrade methyl parathion (MP) in a mineral salt medium with or without the addition of glucose either as suspended cells or immobilized on tezontle, a volcanic rock. MP was degraded by both strains with similar efficiencies, but immobilized cells degraded MP more efficiently than cells in suspension. However, the viability of E. coli cells was much higher than that of the Flavobacterium sp. We confirmed the decrease in toxicity from the treated effluents through acetylcholinesterase activity tests, indicating the potential of this method for the treatment of solutions containing MP.  相似文献   

20.
The aim of the present study was to investigate the inhibitory activity of lactic acid bacteria (LAB) isolated from brewer's grains on Aspergillus section Flavi growth and aflatoxin B1 production. The Aspergillus strains tested were inhibited by all the LAB strains assayed. The isolates Lactobacillus brevis B20, P. pentosaceus B86, Lactococcus lactis subsp. lactis B87, L. brevis B131, and Lactobacillus sp. B144 completely suppressed the fungal growth and reduced aflatoxin B1 production. In conclusion, LAB isolated from brewer's grains show a high inhibitory activity on fungal growth and aflatoxin biosynthesis by Aspergillus flavus and Aspergillus parasiticus. Further studies must be conducted to evaluate the success of in vitro assays under food environment conditions and to elucidate the antifungal mechanism of these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号