首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

2.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typically less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0-5 cm and 5-15 cm). Half-lives (t(?)) varied from 3 days to 51 days with the total 2,4-D mineralization (M(T)) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p < 0.001) influenced both t(?) and M(T). Second-order polynomial equations best described the relations of temperature with t(?) and M(T) as was expected from a biological system. However, the interaction and variability of t(?) and M(T) among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models.  相似文献   

3.
This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg?1, the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day?1 and the total amount of 2,4-D mineralized at 130 days (M130) ranged from 24 to 39%. Both k and M130 were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M130 were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching.  相似文献   

4.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k 1), the growth-linked mineralization rate constant (k 2) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k 1 significantly decreased in sequence of A horizon (0.113% day?1) > B horizon (0.024% day?1) = C horizon (0.026% day?1) and in each soil horizon was greater than k 2. Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k 1 or k 2, except that k 1 was significantly greater in upper slopes (0.170% day?1) than in lower slopes (0.080% day?1). Neither k 1 nor k 2 was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

5.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

6.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 x 3 x 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0-5 and 5-15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k(1)) varied from 0.03 to 0.22 day(- 1), while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k(1) and total 2,4-D mineralization was significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 microg (1-1/n)g(- 1) mL(1/n) and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

7.
This research aimed to develop slow-release formulations (SRFs) of 2,4-dichlorophenoxyacetic acid (2,4-D) using zeolite and bentonite minerals modified with cetyltrimethylammonium (CTMA) surfactant. Adsorption–desorption, greenhouse bioassay and column experiments were carried out to assess the potential of the SRFs to control weeds while reducing the herbicide leaching losses to deep layers of soil. The results showed that only 6.5 mmol 2,4-D kg?1 was retained by Na-bent, and the herbicide was not adsorbed by Na-zeol at all. The surface modification with CTMA surfactant, however, improved the 2,4-D adsorption capacity of the zeolite and bentonite up to 207.5 and 415.8 mmol kg?1, respectively. The synthesized organo-minerals slowly released the retained 2,4-D discharging 22 to 64% of the adsorbed 2,4-D to the solution phase within 7 days. The SRFs significantly (P = 0.05) reduced the herbicide mobility within the soil columns keeping a great portion of the herbicide active ingredient in the upper 5 cm soil layer. The SRFs were significantly (P = 0.05) as effective as the free technical herbicide in weed control without harming the ryegrass as the main plant. Therefore, the synthesized SRFs could be considered as useful tools for weed control in sustainable agriculture.  相似文献   

8.
9.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

10.
This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2.4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 microg(1 - 1/n) g(-1) mL(1/n). First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

11.
Abstract

The persistence of metsulfuron‐methyl in sandy loam and clay soil incubated at different temperatures and moistures contents was investigated under laboratory conditions using longbean (Vigna sesquipedalis L.) as bioassay species. A significant degradation of metsulfuron‐methyl was observed in non‐autoclaved soil rather than the autoclaved soil sample. At higher temperature, the degradation rate in non‐autoclaved soil improved with increasing soil moisture content. In non‐autoclaved sandy loam and clay soil, the half‐life was reduced from 9.0 to 5.7 and from 11.2 to 4.6 days, respectively when moisture level of sandy loam increased from 20 to 80% field capacity at 35°C. In the autoclaved soil, herbicide residue seems to have been broken down by non‐biological process. The rate of dissipation was slightly increased after the second application of the herbicide to non‐autoclaved soils but not in autoclaved soil, indicating the importance of microorganisms in the breakdown process.  相似文献   

12.
Effects of repeated applications of the herbicide butachlor (N-(butoxymethyl)-2-chloro -N-2′,6′-dimethyl acetanilide) in soil on its persistence and soil microbial functional diversity were investigated under laboratory conditions. The degradation half-lives of butachlor at the recommended dosage in soil were calculated to be 12.5, 4.5, and 3.2 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index H′ was observed. However, the Simpson index 1/D and McIntosh index U were significantly reduced (P ≤ 0.05) during the initial 3 days after the first application of butachlor, and thereafter gradually recovered to a similar level to that of the control soil. A similar variation but faster recovery in 1/D and U was observed after the second and third Butachlor applications. Therefore, repeated applications of butachlor led to more rapid degradation of the herbicide, and more rapid recovery of soil microorganisms. It is concluded that repeated butachlor applications in soil had a temporary or short-term inhibitory effect on soil microbial communities.  相似文献   

13.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k(1)), the growth-linked mineralization rate constant (k(2)) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k(1) significantly decreased in sequence of A horizon (0.113% day(-1)) > B horizon (0.024% day(-1)) = C horizon (0.026% day(-1)) and in each soil horizon was greater than k(2). Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k(1) or k(2), except that k(1) was significantly greater in upper slopes (0.170% day(-1)) than in lower slopes (0.080% day(-1)). Neither k(1) nor k(2) was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

14.
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.  相似文献   

15.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

16.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (kobs ) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the kobs value increased from 19.3 to 26 M?1 s?1 and 67 M?1 s?1 when varying the alumina dose from 1 to 2 and 4 g L?1, respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L?1, the kobs values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M?1 s?1, respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M?1 s?1 were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

17.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

18.
Abstract

The effects of the herbicide triclopyr (3,5,6‐trichloro‐2‐pyridinyloxyacetic acid) on the mineralization of 2,4‐D (2,4‐dichlorophenoyxacetic acid) in two soils which differed in their histories of prior exposure to the two herbicides were investigated. The relative effects of triclopyr on 2,4‐D mineralization and most probable numbers of 2,4‐D degraders were dependent upon the soil. Triclopyr was shown to increase 2,4‐D mineralization rates in a soil which had been exposed to both 2,4‐D and triclopyr, but decreased the mineralization rate of 2,4‐D and inhibited the increase of most probable numbers of 2,4‐D degraders in a soil that had not been directly exposed to either herbicide.  相似文献   

19.
The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K2O (18.55 %), and P2O5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2?>?0.99), with the highest k 2 value of the order 105. Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).  相似文献   

20.
Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N 2, N 4-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号