首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This study was conducted to determine the effects of pesticide mixtures on degradation patterns of parent compounds as well as effects on soil microbial respiration. Bioavailability of residues to sensitive plant species was also determined. Soil for this study was obtained from a pesticide-contaminated area within an agrochemical dealer site. Degradation patterns were not affected by the presence or absence of other herbicides in this study. Atrazine concentrations were significantly lower at 21 through 160 days aging time compared to day 0 concentrations. Metolachlor and pendimethalin concentrations were not significantly different over time and remained high throughout the study. Microbial respiration was suppressed in treated soils from day 21 to day 160. Soybean and canola were the most successful plant species in the germination and survival tests. Generally, with increased aging of pesticides in soil, germination time decreased. Survival time of plants increased over time for some treatments indicating possible decreased bioavailability of pesticide residues. In some cases, survival time decreased at the longer 160-day aging period, possibly indicating a change in bioavailability, perhaps as the result of formation of more bioavailable and phytotoxic metabolites. No interactive effects were noted for mixtures of pesticides compared to individually applied pesticides in terms of degradation of the parent compound or on seed germination, plant survival, or microbial respiration.  相似文献   

2.
Abstract

This study was conducted to determine the effects of pesticide mixtures on degradation patterns of parent compounds as well as effects on soil microbial respiration. Bioavailability of residues to sensitive plant species was also determined. Soil for this study was obtained from a pesticide‐contaminated area within an agrochemical dealer site. Degradation patterns were not affected by the presence or absence of other herbicides in this study. Atrazine concentrations were significantly lower at 21 through 160 days aging time compared to day 0 concentrations. Metolachlor and pendimethalin concentrations were not significantly different over time and remained high throughout the study. Microbial respiration was suppressed in treated soils from day 21 to day 160. Soybean and canola were the most successful plant species in the germination and survival tests. Generally, with increased aging of pesticides in soil, germination time decreased. Survival time of plants increased over time for some treatments indicating possible decreased bioavailability of pesticide residues. In some cases, survival time decreased at the longer 160‐day aging period, possibly indicating a change in bioavailability, perhaps as the result of formation of more bioavailable and phytotoxic metabolites. No interactive effects were noted for mixtures of pesticides compared to individually applied pesticides in terms of degradation of the parent compound or on seed germination, plant survival, or microbial respiration.  相似文献   

3.
Methylisocyanate at 500, 1000 and 2500 microg ml(-1) h(-1) markedly affected the fungal propagules in treated soils. Immediately after exposure to gas, both bacteria and actinomycetes were appreciably reduced, although by the seventh day, their populations had gradually increased. Increased soil respiration was evident at 500 microg ml(-1) of methylisocyanate, whereas, inhibition of respiration occurred at 1000 and 2500 microg ml(-1) h(-1). Methylisocyanate adversely affected soil nitrification; inhibition increased with increasing concentration. Up to 2500 microg ml(-1) h(-1), it stimulated ammonification, but the NH(4)-N level gradually declined with increased incubation.  相似文献   

4.
This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.  相似文献   

5.
Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.  相似文献   

6.
Abstract

After application, herbicides often reach the soil and affect non-target soil microorganisms, decreasing their population, diversity or affecting metabolic activity. Therefore, laboratory studies were performed to evaluate the effects of diuron, hexazinone and sulfometuron-methyl alone and mixed upon carbon transformation by soil microorganisms in clayey and sandy soils and the effect on bacterial diversity and structure. Control treatment without herbicide application was also performed. Sub-samples from the control and herbicide treatments (10?g – in triplicate) were collected before herbicide application and 7, 14, 28 and 42?days after treatment (DAT), then 1?mL of 14C-glucose solution was applied. The released 14CO2 was trapped in 2?M NaOH solution and the radioactivity was analyzed by liquid scintillation counting (LSC), 12?h after glucose application. The effect of herbicides on bacterial diversity was evaluated by T-RFLP. The experiment was conducted in a complete randomized design. Hexazinone did not affect 14CO2 evolution. Diuron showed a greater 14CO2 evolution in sandy and clayey soil, while sulfometuron-methyl led to an increase in sandy soil, at 42 DAT. A greater evolution of carbon was observed in the treatment with herbicide mixture in sandy soil, compared with the same treatment in clayey soil or control. However, the herbicide mixture application did not affect the soil biological activity measured by the respiration rate induced by substrate. On the other hand, the herbicide mixtures affected the bacterial diversity in both soils, being the strongest effect to diuron and sulfometuron-methyl in clayey soil and hexazinone in sandy soil.  相似文献   

7.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

8.
An incubation study was conducted under laboratory conditions to compare the effects of soil amendment of combined paper mill sludge (PS) and decomposed cow manure (DCM) on selected microbial indicators. A lateritic soil (Typic Haplustalf) was amended with 0 (control), 20 or 80tha(-1) (wet weight) of PS or DCM. The amended soils were then adjusted to 60% water holding capacity (WHC) or submerged conditions, and incubated at 27 degrees C in dark for up to 120days (d). The microbial biomass C (MBC), the basal soil respiration and the enzyme activities of the beta-glucosidase, acid phosphatase and sulphatase were analyzed at day 15, 30, 45, 60 and 120. Compared to the unamended soil (control), the MBC, the basal soil respiration and the enzyme activities increased with the rate of PS and DCM. At similar rate, the DCM treatment increased significantly the MBC, the soil respiration and the enzyme activities compared to the PS treatment. Also, the water regimes affected the microbial activities. At 60% WHC, the MBC and soil respiration increased during the first 30d and decreased thereafter. The enzyme activities showed similar trends, where they increased for the first 60d, and decreased thereafter. In contrast, under submerged condition, the MBC and enzymes activities declined during 120d, whereas the soil respiration increased. Compared to the control, the used of PS and DCM had no negative impact of the soil microbial parameters, even at the highest application rate. Long-term field experiments are required to confirm these laboratory results.  相似文献   

9.
A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO(2) production by means of a pH-indicator and bicarbonate-containing agar, or as (14)CO(2) evolution from (14)C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO(2) production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the (14)C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined.  相似文献   

10.
For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected.  相似文献   

11.
Changes in aerobic bacteria and autotrophic nitrifier numbers, and in respiration and nitrification in two soils treated with cinosulfuron at 42 (field rate) and 4200 microg/kg were studied after 1 and 4 weeks of incubation under laboratory conditions. Only nitrification at 1 week was slightly inhibited by the cinosulfuron treatment, even at the field rate. In vitro toxicity tests carried out in agar media on representative aerobic bacteria, fungi and Azotobacter strains isolated from the two soils, as well as on nine collection soil bacteria, showed that only a very high cinosulfuron concentration (100 mg/l) can have negative effects on the growth of a limited number of soil heterotrophic microorganisms, under conditions similar to those of soil environment. The absence of three branched-chain amino acids increased bacterial sensitivity, thus showing the importance of the chemical conditions and suggesting acetolactate synthase enzyme blockage as the toxicity mechanism. It is concluded that cinosulfuron has a negative effect on only a few aspects of the microbial community in soil ecosystems, even at concentrations higher that those currently in use.  相似文献   

12.
In this study, we evaluated the effect of the application by two agrochemicals, methamidophos (O,S-dimethyl phosphoroamidothioate) and urea, on microbial diversity in soil, using the combined approaches of soil microbial biomass analysis and community level physiological profiles (CLPPs). The results showed that both a low and a high level of methamidophos application (CS2 and CS3) and urea application (CS4) significantly decreased microbial biomass C (Cmic) by 41-83% compared with the control (CS1). The soil organic C (Corg) values of CS3 and CS4 were significantly higher and lower by 24% and 14%, respectively, than that of CS1. Similarly to Cmic, the values of Cmic/Corg of the three applied soils which decreased were lower by 31-84% than that of CS1. In contrast, the respiration activity of the three applied soils were significantly higher than the control. Agrochemical application also significantly increased the soil total of N and P (Ntol and Ptol) and decreased the Corg/Ntol and Corg/Ptol values. The CLPPs results showed that the AWCD (average well color development) of the three applied soils were significantly higher than that of CS1 during the incubation period. Substrate richness, Shannon and Simpson indices of microbial communities under chemical stresses, increased significantly. In addition, the CFU (colony-forming unit) numbers of methamidophos metabolized bacteria in CS2 and CS3 also increased significantly by 86.1% and 188.9% compared with that of CS1. The combined results suggest that agrochemicals reduce microbial biomass and enhance functional diversities of soil microbial communities; meanwhile, some species of bacteria may be enriched in soils under methamidophos stress.  相似文献   

13.
We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha?1 on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.  相似文献   

14.
A laboratory experiment was performed in order to evaluate the extent to which metam sodium (MS) applied at two different recommended rates and its degradation product, methyl isothiocyanate (MITC), affect soil respiration. Results suggest that MS degradation to MITC was complete within 4 hours and that MITC decomposed quickly in a few days, except in the soil containing high organic matter where it was still present after 15 days. Following the addition of MS, a lag phase appeared in CO2-C evolution in the soil. It was longer for the higher dose of MS added and for the two soils with low organic C content. The dynamics of the process was described by the Bonde and Rosswall model and by the Gompertz RS E model for the untreated and the MS-treated soils, respectively.  相似文献   

15.
Araújo AS  Monteiro RT 《Chemosphere》2006,64(6):1043-1046
This laboratory study examines the effect of application of untreated and composted textile sludge on microbial biomass and activity in a Brazilian soil. The soil was amended with untreated and composted sludge at rates equivalent of 6.4t ha(-1) (0.64 g per 100g of soil) and 19t ha(-1) (1.90 g per 100g of soil), respectively, and were incubated at 28 degrees C for 60 days and daily sampled for microbial activity. An additional experiment, in the same condition, was conduced for evaluation of microbial biomass and enumeration of microorganisms at 15, 30 and 60 days after incubation. The application of composted sludge increased significantly the microbial biomass and activity, and bacteria number of soil. There were not differences in the microbial activity and bacteria number among the control and untreated sludge amended soils. In conclusion, after 2 months of incubation, the effects of the two amendments on soil microorganisms were: microbial biomass, soil respiration and bacteria number were increased only in composted sludge treated soil. qCO2 and fungi number were not affected by untreated and composted sludge.  相似文献   

16.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

17.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

18.
Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.  相似文献   

19.
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.  相似文献   

20.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号