首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contaminated irrigation water may greatly affect not only the quality of produce but also the people exposed to it. In this study, agricultural irrigation waters in Bulacan, Philippines were assessed and found to be contaminated with Escherichia coli (E. coli) ranging from 0.58 to 4.51 log10 CFU/mL. A total of 79 isolates of E. coli were confirmed through polymerase chain reaction (PCR) amplifying the uidA gene and were tested for phenotypic resistance using 10 antimicrobials through the Kirby–Bauer disc diffusion method. Forty-six isolates (58.22%) were noted to be multidrug resistant (MDR) with high resistance rate to cephalothin, tetracycline, streptomycin, ampicillin, trimethoprim, nalidixic acid, and chloramphenicol. Moreover, this study also examined the prevalence of Class I and II integrons accounting to 67.39% and 17.39%, respectively, of the MDR E. coli strains using multiplex PCR. The results imply that the agricultural water used in Bulacan is contaminated with the fecal material of man or other animals present in the area, and the presence of MDR bacteria, which pose a potential threat to individuals in these areas, is alarming. In addition, detection of integrons could be a good marker for the identification of MDR isolates. Lastly, this study could develop strategies for the proper management of farming sites leading to the detection of food-borne pathogens and prevention of infectious diseases.  相似文献   

2.
Microbial contamination of fresh produce can present a severe risk to public health. By conducting a rigorous survey of irrigation waters, the impacts of fecal contamination on the quality of produce could be assessed. In this study, surface waters were observed to be contaminated with Escherichia coli, Salmonella spp., and somatic coliphages. Culture methods show that out of 373 irrigation water, soil, and vegetable samples collected for a 1-year period, 232 (62.20%) were found positive for E. coli, 213 (57.26%) for somatic coliphages, and 2 (0.53%) for Salmonella spp. Out of 190 water samples, 167 (87.9%) were found to have E.coli, 174 (91.6%) have somatic coliphages, and 1 (0.5%) with Salmonella spp. In soil samples, 36 of 91 (39.6%) have E. coli, 31 (34.0%) have somatic coliphages, and none with Salmonella spp. Lastly, out of 92 vegetable samples, 29 (31.5%), 8 (8.7%), and 1 (1.1%) were found to have E. coli, somatic coliphages, and Salmonella spp., respectively. Molecular analysis confirmed the presence of bacterial contaminants. Seasonal weather conditions were noted to have an effect on the presence and number of these fecal indicator organisms. The observed data suggest that contaminated irrigation water may greatly affect the quality of fresh produce from these agricultural operations.  相似文献   

3.
Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC50) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC50 of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.  相似文献   

4.
人工湿地中抗生素抗性大肠杆菌和抗性基因的去除与分布   总被引:1,自引:0,他引:1  
抗生素的滥用导致抗生素抗性菌和抗性基因随生活污水和养殖废水的排放在环境中肆意散播,其去除及环境行为越来越受到关注。采用K-B纸片法测定了9套不同工艺构型模拟人工湿地中大肠杆菌对7种抗生素的抗性率,并应用多重PCR检测磺胺类sul1、2、3与四环素tetA、B、C、D抗性基因,探究人工湿地对抗性菌的去除效率及抗性菌、抗性基因的分布规律。结果显示,人工湿地能有效去除污水中70%左右的抗性大肠杆菌,有效降低了细菌抗性的传播风险;共计分离出535株大肠肝菌中有378株对一种以上抗生素有抗性性,以四环素、磺胺类和氨苄西林抗性率最高,达到25%以上,其他4种抗性率较低,不足20%;2种抗性基因的检出率都在70%以上;对不同采样点大肠杆菌的抗性性及抗性基因的比较发现,各部分大肠杆菌的抗性水平、多重抗性指数(MRI)以及抗性基因(sul、tet)检出率和组合数表现出:基质≥出水>进水,推测抗性菌被湿地基质截留,在基质生物膜上发生抗性基因的重组,并释放抗性菌,提高了出水中抗性水平和抗性基因检出率。  相似文献   

5.

Containment of genetically modified (GM) microorganisms such as Escherichia coli is a legal requirement to protect the environment from an unintended release and to avoid horizontal gene transfer (HGT) of recombinant DNA to native bacteria. In this study, we sampled the laboratory wastewater (LWW) at a large Swiss university from three sources over 2 years and cultured ampicillin-resistant, presumptive GM E. coli. From a total of 285 samples, 127 contained presumptive GM E. coli (45%) at a mean concentration of 2.8 × 102 CFU/ml. Plasmid DNA of 11 unique clones was partially or entirely sequenced. All consisted of cloning vectors harboring research-specific inserts. To estimate the chance of HGT between GM E. coli and native bacteria in LWW, we identified taxa representative for the bacterial community in LWW using 16S rRNA amplicon sequencing and measured conjugation frequencies of E. coli with five LWW isolates. At optimal conjugation conditions, frequencies were between 3.4 × 10−3 and 2.4 × 10−5. Given the absence of transferable broad-host range plasmids and suboptimal conjugation conditions in the LWW system, we conclude that the chance of HGT is relatively low. Still, this study shows that the implementation of robust containment measures is key to avoid the escape of GM microorganisms.

  相似文献   

6.
The microbiological quality of urban wastewaters presents important environmental, sanitary, and political challenges. However, the variability of untreated wastewater quality is seldom known when it comes to microbial parameters. This study aims to evaluate the variability of microbiological quality in wastewater influents from different wastewater treatment plants connected to combined and partially separate sewer networks in the Parisian area and to evaluate the impact of this variability on the treatment efficiency and on the accuracy of wastewater effluent monitoring. The densities of fecal indicator bacteria (FIB), Escherichia coli and intestinal enterococci, and their partitioning on settleable particles were analyzed at the inlet of two wastewater treatment plants during dry weather (130 composite samples and 7 days sampled every 2 hours) and storm events (39 composite samples, and 7 rain courses) from 2008 to 2012. The results showed that fecal indicator densities vary according to the network characteristics and according to the meteorological conditions. During storm events, a significant dilution of E. coli and enterococci was observed, as well as a decrease in the settleable fraction of E. coli during the maximal impact of the storm. However, storm events did not significantly impact the regular FIB monitoring. FIB removals by primary and secondary treatment were significantly correlated with FIB densities in influent wastewater; however, meteorological conditions also influenced the removal of FIB.  相似文献   

7.
Faecal indicator bacteria (FIB) are commonly used as water quality indicators; implying faecal contamination and therefore the potential presence of pathogenic enteric bacteria, viruses, and protozoa. Hence in wastewater treatment, the most commonly used treatment process measures (surrogates) are total coliforms, faecal coliforms, Escherichia coli (E. coli), and enterococci. However, greywater potentially contains skin pathogens unrelated to faecal load, and E. coli and other FIB may grow within greywater unrelated to pathogens. Overall, FIB occurs at fluctuating and relatively low concentrations compared to other endogenous greywater bacteria affecting their ability as surrogates for pathogen reduction. Therefore, unlike municipal sewage, FIB provides a very limited and unreliable log-reduction surrogate measure for on-site greywater treatment systems. Based on our recent metagenomic study of laundry greywater, skin-associated bacteria such as Staphylococcus, Corynebacterium, and Propionibacterium spp. dominate and may result in more consistent treatment surrogates than traditional FIB. Here, we investigated various Staphylococcus spp. as potential surrogates to reliably assay over 4-log10 reduction by the final-stage UV disinfection step commonly used for on-site greywater reuse, and compare them to various FIB/phage surrogates. A collimated UV beam was used to determine the efficacy of UV inactivation (255, 265 and 285 nm) against E. coli, Enterococcus faecalis, E. faecium, E. casseliflavus, Staphylococcus aureus, and S. epidermidis. Staphylococcus spp. was estimated by combining the bi-linear dose-response curves for S. aureus and S. epidermidis and was shown to be less resistant to UV irradiation than the other surrogates examined. Hence, a relative inactivation credit is suggested; whereas, the doses required to achieve a 4 and 5-log10 reduction of Staphylococcus spp. (13.0 and 20.9 mJ cm?2, respectively) were used to determine the relative inactivation of the other microorganisms investigated. The doses required to achieve a 4 and 5-log10 reduction of Staphylococcus spp. resulted in a log10 reduction of 1.4 and 4.1 for E. coli, 0.8 and 2.8 for E. faecalis, 0.8 and 3.6 for E. casseliflavus and 0.8 and 1.2 for MS2 coliphage, respectively. Given the concentration difference of Staphylococcus spp. and FIB (3 to 5-log10 higher), we propose the use of Staphylococcus spp. as a novel endogenous performance surrogate to demonstrate greywater treatment performance given its relatively high and consistent concentration and therefore ability to demonstrate over 5-log10 reductions.  相似文献   

8.
This study investigated antibiotic resistance profiles including antibiotic resistance frequencies, resistance genes and resistance patterns in Escherichia coli strains isolated from traditional and integrated aquaculture systems in South China by using antibiotic susceptibility testing and real time polymerase chain reaction (PCR) technique. The E. coli isolates were found to be resistant to at least one antibiotic among 12 antibiotics. Higher resistance frequencies to ampicillin, sulfamethoxazole, trimethoprime, streptomycin and tetracycline were found compared to the rest antibiotics. Among the 10 tetracycline resistance genes detected in the resistant isolates, the most prevalent tetracycline resistance genes were tetA, tetW and tetB with the frequency of 69.7%, 63.5% and 21.9%, respectively. Three sulfonamide resistance genes were detected in these resistant isolates, with their detection frequencies in the following order: sul2 (55.3%) > sul3 (28.2%) > sul1 (6.2%). Four resistance genes mainly encoding extended-spectrum β-lactamases (ESBLs) were detected in these resistant isolates, with the detection frequencies of blaTEM (28.4%) > blaOXA (9.7%) > blaCTX (9.3%) > blaCARB (5.2%) > blaSHV (0.0%). It was found that the integrated aquaculture system exhibited generally higher prevalence of antibiotic resistance than the traditional aquaculture system. An integrated aquaculture system could facilitate development of bacterial resistance and spread of the antibiotic resistance genes, and consequently become an important reservoir of resistance genes.  相似文献   

9.
The discharge of untreated or inadequately treated effluents has been identified among the activities responsible for the spread of a wide range of potentially infectious agents. The aim of this study was to determine whether inadequate treatment of wastewater and the faecal pollution load of effluents and receiving water bodies in Sedibeng District and Soshanguve peri-urban area of the Tshwane Metropolitan Municipality could be a potential threat to the health of the surrounding communities. Variations in the counts of faecal indicator bacteria and pathogenic microorganisms and compliance of the effluents and receiving water bodies with South African and World Health Organization standards were assessed between August 2011 and May 2012 using culture-based methods and molecular techniques. The overall quality of effluents did not comply with the South African special standard of no risk for unrestricted irrigation (zero?Escherichia coli/100 ml). The quality of the receiving water bodies did not comply with South African regulatory limits set for domestic purposes (zero?E.?coli/100 ml, <30 faecal enterococci/100 ml and <1 somatic coliphages/100 ml), for full contact recreation (<20 somatic coliphages/100 ml) and aquaculture (<10?E.?coli/100 ml) and WHO standards for full and intermediate contact recreational use (<1?E.?coli/100 ml and <40 faecal enterococci/100 ml, respectively). The PCR results revealed the prevalence of pathogenic microorganisms; between 0 and 60 % of samples tested positive for Salmonella Typhimurium and Shigella dysenteriae, and between 20 and 60 % of samples tested positive for Vibrio cholerae. These findings demonstrated that potential health risks might be associated with the use of the target river waters for domestic, recreational and irrigation purposes. This study calls for a prompt intervention to improve wastewater management.  相似文献   

10.
Attachment of pathogenic bacteria to food contact surfaces and the subsequent biofilm formation represent a serious threat for the food industry, since these bacteria are more resistant to antimicrobials or possess more virulence factors. The main aim of this study was to investigate the correlation between antibiotic resistance against 13 antibiotics, distribution of 10 virulence factors and biofilm formation in 105 Escherichia coli strains according to their origin. The high prevalence of antibiotic resistance that we have found in wildlife isolates could be acquired by horizontal transfer of resistance genes from human or domestic or farm animals. Consequently, these commensal bacteria might serve as indicator of antimicrobial usage for human and veterinary purposes in the Czech Republic. Further, 46 out of 66 resistant isolates (70%) were able to form biofilm and we found out statistically significant correlation between prevalence of antibiotic resistance and biofilm formation ability. The highest prevalence of antibiotic resistance was observed in weak biofilm producers. Biofilm formation was not statistically associated with any virulence determinant. However, we confirmed the correlation between prevalence of virulence factors and host origin. Chicken isolates possessed more virulence factors (66%), than isolates from wildlife (37%). We can conclude that the potential spread of antibiotic resistance pattern via the food chain is of high concern for public health. Even more, alarming is that E. coli isolates remain pathogenic potential with ability to form biofilm and these bacteria may persist during food processing and consequently lead to greater risks of food contamination.  相似文献   

11.
This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)5-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish.  相似文献   

12.
Thevenon F  Adatte T  Wildi W  Poté J 《Chemosphere》2012,86(5):468-476
This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.  相似文献   

13.
This study was conducted to assess the retail food as a possible vehicle for antimicrobial resistant, particularly quinolones resistant and pathogenic Escherichia coli. We determined the prevalence and characteristics of nalidixic acid (Nal) resistant E. coli isolates from diverse retail food samples. In all, 70 (28%) of 250 E. coli isolates studied were Nal-resistant E. coli and 91% of these were multi-drug resistant. Plasmid mediated quinolone resistance genes were identified in 32 isolates, including aac(6′)-Ib-cr (n = 16), qnrS1 (n = 11) and qnrB19 (n = 7). Mutations in gyr A and par C genes were detected among 80% of the isolates, and the isolates showed substitution Ser83-Leu and Asp87-Asn in gyrA and Ser80-Ile in parC. In addition, three different gene cassettes were identified (aadA1, aadA7, aac(3)-Id) in 18%. Virulence-associated genes stx1, eae, sfa, hlyA and stx2 were found in six (8%), three (4%), two (3%), three (4%) and three (4%) isolates, respectively. E. coli isolates of phylogenetic group A were dominant (64%, 45/70). Pulsed field gel electrophoresis revealed none epidemiological relationship between these isolates. The results of this work report the higher frequency of Nal-resistant E. coli isolates from Moroccan retail food samples including MDR and pathogenic isolates.  相似文献   

14.
Pathogenic bacteria attached to the hide or shed in the feces of cattle at slaughter can contaminate carcasses intended to be processed for human consumption. Therefore, new pre-harvest interventions are needed to prevent the carriage and excretion of foodborne pathogens in cattle presented to the processing plant. The objectives of this study were to examine the antimicrobial effects of hydrolysable tannin-rich chestnut and condensed tannin-rich mimosa extracts on bacterial indicators of foodborne pathogens when applied as a hide-intervention and as a feed additive to feedlot cattle. Water (control) or solutions (3 % wt/vol) of chestnut- and mimosa-extract treatments were sprayed (25 mL) at the left costal side of each animal to a 1000 cm2 area, divided in four equal quadrants. Hide-swabs samples obtained at pre-, 2-min, 8-h, and 24-h post-spray application were cultured to enumerate Escherichia coli/total coliforms and total aerobic plate counts. In a second experiment, diets supplemented without (controls) or with (1.5 % of diet dry matter) chestnut- or mimosa-extracts were fed during a 42–day experimental feeding period. Weekly fecal samples starting on day 0, and rumen fluid obtained on days 0, 7, 21 or 42 were cultured to enumerate E.coli/total coliforms and Campylobacter. Tannin spray application showed no effect of treatment or post-application-time (P> 0.05) on measured bacterial populations, averaging 1.7/1.8, 1.5/1.6 and 1.5/1.7 (log10 CFU/cm2) for E. coli/total coliforms, and 4.0, 3.4 and 4.2 (log10CFU/cm2) in total aerobes for control, chestnut and mimosa treatments, respectively. Mean (± SEM) ruminal E. coli and total coliform concentrations (log10 CFU/mL) were reduced (P< 0.01) in steers fed chestnut-tannins (3.6 and 3.8 ± 0.1) in comparison with the controls (4.1 and 4.2 ± 0.1). Fecal E. coli concentrations were affected by treatment (P< 0.01), showing the highest values (log10 CFU/g) in fecal contents from mimosa-fed steers compared to controls (5.9 versus 5.6 ± 0.1 SEM, respectively). Total coliforms (log CFU/g) showed the highest values (P< 0.01) in feces from chestnut- and mimosa-fed steers (6.0 and 6.1 ± 0.1 respectively) in comparison with controls (5.7 ± 0.1). Fecal Campylobacter concentrations (log10CFU/g) were affected by treatment (P< 0.05), day (P< 0.001) and their interaction (P< 0.01) with the controls having lower concentrations than chestnut- and mimosa-fed steers (0.4, 1.0, and 0.8 ± 0.3, respectively). It was concluded that under our research conditions, tannins were not effective in decreasing measured bacterial populations on beef cattle hides. Additionally, chestnut tannin reduced E. coli and total coliforms within the rumen but the antimicrobial effect was not maintained in the lower gastrointestinal tract. Further research is necessary to elucidate the possible antimicrobial effects of tannins at site-specific locations of the gastrointestinal tract in beef cattle fed high-grain and high-forage diets.  相似文献   

15.
水质对紫外消毒在两种典型再生水中应用的影响   总被引:1,自引:0,他引:1  
以大肠杆菌为对象,研究了再生水水质变化对紫外消毒效果和光复活的影响。结果表明,紫外对大肠杆菌有很强的灭活作用,在紫外剂量为4mJ/cm^2时,大肠杆菌的灭活率达到了4.41个对数级。腐殖酸、铁和2种再生水水体中其他溶解性物质会影响光吸收和紫外透射率,但对紫外消毒动力学无影响。在颗粒物浓度为0~200mg/L的范围内,外源高岭土和活性污泥等颗粒物的投加对紫外消毒效果影响较小,而再生水水样W1中原有的2.61/1:g/L的颗粒物则会极大地影响消毒效果,使UV对细菌的灭活出现明显的拖尾现象。腐殖酸会增强紫外损伤大肠杆菌的光复活能力,但2种再生水中细菌的光复活能力相对磷酸盐缓冲溶液(PBS)中减弱,减弱程度在不同水样中有所不同。  相似文献   

16.
As little is known about the potential risks associated with the use of microbiologically contaminated river water for recreation, irrigation, or domestic purposes, the Msunduzi River in Pietermaritzburg (KwaZulu-Natal, South Africa) was evaluated. In addition to pH, temperature, and chemical oxygen demand, quantitative and qualitative microbiological analyses were performed monthly for 13 months. These included aerobic plate counts, counts of aerobic and anaerobic sporeformers, most probable numbers for total and faecal coliforms and Escherichia coli and the detection of Salmonella spp., Staphylococcus aureus, and intestinal enterococci. Presumptive E. coli and S. aureus from river water samples were confirmed using PCR and additionally matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) for E. coli. Aerobic plate counts were above the South African Department of Water Affairs recommended guideline level for domestic use of 100 cfu/ml for all 13 months assessed. Faecal coliform (up to 63,000 MPN/100 ml) and E. coli (up to 7,900 MPN/100 ml) levels regularly exceeded stipulated limits for safe irrigation, domestic and recreational use. The presence of Salmonella spp., S. aureus, and intestinal enterococci frequently coincided with faecal coliform and E. coli levels above 1,000 MPN/100 ml. This illustrates the value of using guideline values for faecal coliforms and E. coli as indicators for the presence of potential pathogens. PCR and MALDI-TOF MS confirmation of E. coli were in agreement, thereby demonstrating the potential of MALDI-TOF MS as a suitable alternative. These data demonstrate that potential health risks are associated with using Msunduzi River water for irrigation and recreational or domestic purposes.  相似文献   

17.
The aim of the study was to determine the effects of land use management on changes in the fecal contamination of water in the ?yna River, one of the main lowland watercourses in the southern watershed of the Baltic Sea (northern Poland). A total of 120 water samples were collected in different seasons of 2011 and 2012 at 15 sites where the river intersected forest (FA), agricultural (AA), and urbanized (UA) areas. Fecal indicator bacteria (FIB), the counts of Enterobacteriaceae and Escherichia coli, total bacterial counts (TBCs), and domain Bacteria (EUB338) were determined by culture-dependent and culture-independent methods. Temperature, pH, chemical oxygen demand, dissolved oxygen, total dissolved solids, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, orthophosphate, and total phosphorus were also determined. The lowest bacterial counts were noted in water samples collected in FA, and the highest in samples collected in UA. Statistically significant differences were determined between bacterial populations across the analyzed land use types and in different sampling seasons. Significant correlations were also observed between the populations of FIB and physicochemical parameters. The results indicate that land use type influenced FIB concentrations in river water. The combined use of conventional and molecular methods improves the accuracy of fecal contamination analyses in river ecosystems.  相似文献   

18.

Purpose

The aim of this paper was to develop a new recreational water quality index (RWQI) as a tool to ensure the health of swimmers and to take practical decisions.

Methods

RWQI was elaborated with epidemiological data, and we carried out an exhaustive study of the different guidelines for recreational waters proposed by different organisations around the world. Different parameters were chosen, considering, as a priority, the swimmer??s contact and the possibility of ingestion of water during the recreational activity. Furthermore, rating curves were established for pH, chemical oxygen demand, nitrate, phosphate, detergents, enterococci, total coliforms, faecal coliforms and Escherichia coli.

Results and conclusions

The index was applied to the data set on water quality of the Potrero de los Funes River (San Luis, Argentina), generated during 2 years (2009?C2010). Following the RWQI values classification, most of the Potrero de los Funes water samples fell in the good quality range during the study period.  相似文献   

19.
Livestock manure is suitable for use as a composting material. However, various intestinal microbes, such as Escherichia coli, are significant components of such manures. Thus, it is desirable that the level of intestinal microbes, and particularly opportunistic pathogens, in compost is inspected and counted regularly. The sensitivity and specificity of detection of E. coli in compost have been improved by selective cultivation followed by colony polymerase chain reaction (PCR) using the ECO primer. Indeed, the sensitivity of this method is higher than that of DNA extraction from compost and PCR. In this study, changes in numbers of E. coli present in a field-scale composting process over time was assessed using selective cultivation and colony PCR. Numbers of ECO-positive colonies after 24 h decreased, with a concomitant rise in compost temperature. ECO-positive colonies were not detected from 33 to 48 h. However, ECO-positive colony numbers increased beginning on day 4 and continuing until day 42. Thus, it seems likely that the high temperatures reached during the composting process did not affect E. coli numbers in the final compost. Additionally, selective cultivation followed by colony PCR using specific primers is an appropriate method of determining levels of cultivable pathogens in composted materials.  相似文献   

20.
Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号