首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract: Selection of a biochemical oxygen demand (BOD) reaction model to incorporate into dissolved oxygen (DO) water quality models is an overlooked choice available to river water quality modelers. Data from rivers can serve in screening methods to discriminate between competing water quality models. In this study, 15 published BOD and DO datasets based on a 7 year long study of the Bormida River in Italy are used to calibrate three‐multiorder BOD models: first‐order, three‐halves order, and second‐order, which are then included in three corresponding DO models which incorporate these BOD models. The adequacy of the first‐order, three‐halves order and second‐order BOD models was evaluated by calculating the root mean square error between a model and data. A similar procedure was followed to evaluate three DO models, each of which incorporated one of the three BOD models. The first‐order BOD model most frequently fit the river data best, followed by the three‐halves order and the second‐order BOD models. The DO model incorporating a first‐order BOD model most frequently fit the data best, followed by the DO order incorporating second‐order BOD and the DO model incorporating three‐halves order BOD.  相似文献   

2.
ABSTRACT: The spatial and temporal variability of dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrate concentration and total coliform (TC) were investigated at nine sampling stations distributed along the main rivers of the Piracicaba River Basin, a 12,400 km2 catchment located in São Paulo State, one of the most developed regions of Brazil. Spatially, a downstream impoverishment of water quality conditions was observed, as seen by the decrease of DO, and increase of BOD, nitrate, and TC. These changes were probably caused by accumulating downstream discharge of domestic and industrial sewage. Temporal evaluation of 18 years of data showed that DO decreased with time for the majority of the sampling stations, while BOD, nitrate, and TC increased. A law, approved at the end of 1991, proposed a new water tax for river water extraction for industrial and agricultural use. The amount of this tax is determined according to the water quality of the extracted water. Therefore, the evaluation of the water quality status in this basin is a first step to help resources managers to determine the values for this tax.  相似文献   

3.
ABSTRACT. Recent advances in water quality modelling have pointed out the need for stochastic models to simulate the probabilistic nature of water quality. However, often all that is needed is an estimate of the uncertainty in predicting water quality variables. First order analysis is a simple method of providing an estimate in the uncertainty in a deterministic model due to uncertain parameters. The method is applied to the simplified Streeter-Phelps equations for DO and BOD; a more complete Monte Carlo simulation is used to check the accuracy of the results. The first order analysis is found to give accurate estimates of means and variances of DO and BOD up to travel times exceeding the critical time. Uncertainty in travel time and the BOD decay constant are found to be most important for small travel times; uncertainty in the reaeration coefficient dominates near the critical time. Uncertainty in temperature was found to be a negligible source of uncertainty in DO for all travel times.  相似文献   

4.
A deterministic, one-dimensional, unsteady numerical model has been developed, tested, and applied to simulate mean daily dissolved oxygen (DO) characteristics in 27 lake classes in the state of Minnesota. Reaeration and photosynthesis are the oxygen sources, while respiration, sedimentary, and biochemical water column oxygen demand are the sinks of oxygen in the model. The lake classes are differentiated by surface area (A s), maximum depth (H max), and trophic status expressed as Secchi depth (Z s). Because lake stratification is most important to lake oxygen dynamics, simulated DO characteristics are plotted in terms of a stratification parameterA s/H max 0.25 and Secchi depthZ s. Simulations provide DO profiles on a daily time scale. Specific DO characteristics of ecological and environmental interest are epilimnetic DO, hypolimnetic DO, DO gradient from surface to bottom, and DO minima and maxima. Specific results are as follows: Simulated mean daily and weekly DO values in the epilimnion of all lakes for both past and future climate scenarios are near saturation over the summer season. Hypolimnetic DO values depend strongly on lake morphometry, trophic status, and time throughout the summer season. Future climate conditions are specified as the historical records from 1955 to 1979, adjusted (monthly) by the 2 × CO2 GISS model output to account for doubling of atmospheric CO2. With this climate change, weekly averaged epilimnetic DO is projected to drop by less than 2 mg/liter, and will remain above 7 mg/liter throughout the open water season. The hypolimnetic DO reductions after climate change are on the order of 2–8 mg/liter. Periods of anoxia are longer by as much as 80 days. Those changes would alter water quality dynamics in lakes and have a profound effect on lake ecosystems including indigenous fishes. The results presented are useful for evaluating environmental management options.  相似文献   

5.
Todd, M. Jason, George Vellidis, R. Richard Lowrance, and Catherine M. Pringle, 2009. High Sediment Oxygen Demand Within an Instream Swamp in Southern Georgia: Implications for Low Dissolved Oxygen Levels in Coastal Blackwater Streams. Journal of the American Water Resources Association (JAWRA) 45(6):1493‐1507. Abstract: Sediment oxygen demand (SOD) is considered a critical and dominant sink for dissolved oxygen (DO) in many river systems including blackwater streams and is often poorly investigated or roughly estimated in oxygen budgets. The purposes of this study are to (1) characterize and document the magnitude and variability of SOD in representative instream swamps found on the Georgia Coastal Plain; (2) predict SOD from more readily measured parameters such as soil, sediment, and litter organic carbon; and (3) obtain an accurate representation of SOD values within this understudied habitat to help improve water quality models and the continued development of DO as an appropriate water quality standard. Results show SOD rates ranging from 0.491 to 14.189 g O2/m2/day, up to 18 times higher than values reported for southeastern sandy‐bottomed streams and suggest that instream swamps are repositories of large amounts of organic matter and are thus areas of intense oxygen demand and a major factor in determining the oxygen balance of the watershed as a whole. These areas of intense oxygen demand in relatively unimpacted areas indicate that low DO concentrations may be a natural phenomenon. SOD rates were significantly correlated (alpha = 0.05) with a number of sediment parameters, with organic carbon and total organic carbon being the best predictors of SOD rate. When developing water quality models, managers should pay closer attention to the influence of SOD as it plays a critical role in determining DO levels within instream swamps and the river system.  相似文献   

6.
An assessment of the pollution status of River Illo, located within River Owo catchments area in Ota, Ogun State, Nigeria, was carried out. The River’s response to deoxygenation due to BOD loading from an abattoir and its dissolved oxygen (DO) level was predicted using the modified Streeter-Phelps model. The average concentrations of measured parameters at the sampling stations include: 2.24 mg/l of DO, 312.85 mg/l of BOD, 782.86 mg/l of chemical oxygen demand, and 620.76 g/l of total solids. The DO model for River Illo showed a positive correlation between measured and calculated DO, while the dissolved oxygen curve gave a double spoon shape of two major segments with distinct zones of degradation, decomposition, and recovery. The self-purification factor (f) for both segments ranged between 0.8 and 1.1 depicting River Illo as a slow moving or sluggish river. The above results revealed slow reaeration of the water body while full recovery from pollution was difficult. The treatment of River Illo before usage is very essential to ensure public health safety of users from waterborne diseases.  相似文献   

7.
ABSTRACT: The purpose of this work is to study the installation of artificial aerators for water quality control of a stream which receives thermal and organic waste discharges. The location and numer of diffuser type aerators to be installed along the stream are determined so as to maintain the stream DO content above a certain minimum requirement (4 mg/l or 5 mg/l) for normal aquatic life. Effects of the stream velocity, upstream BOD concentration and rates of thermal and organic waste discharges to the stream are examined.  相似文献   

8.
ABSTRACT: Effects of aquatic macrophytes are not considered in most standard water quality models. This study used field measurements and water quality models to help determine the effects of aquatic macrophytes on dissolved oxygen (DO) concentrations in a shallow tailwater reservoir. Installation of a hydropower plant and macrophytes (primarily Potamogeton and Chara) in a large shallow portion of the lake are possible causes of reduced DO levels in the tailwater reservoir. A water quality model (WASP5) was used to quantify the various DO sources and sinks and to evaluate the effects of the hydropower operations on DO levels in the lake. It was found that the macrophytes in Lake Ogallala had a significant effect on the DO levels in the lake. At an average macrophyte density of about 6,360 g/m2 (wet weight) in 2000, the DO fluctuated daily from about 3 mg/l to about 12 mg/l. At an average macrophyte density of about 2,120 g/m2 (wet weight) in 2002, the DO fluctuated from about 5 mg/l to about 9 mg/l daily. The model predicted that the DO would remain near 5 mg/l without macrophytes. The photo‐synthetic and respiration rates developed in the model (4.4 mg/g‐hr and 1.4 mg/g‐hr, respectively) agree well with literature values.  相似文献   

9.
ABSTRACT: A river basin-wide water quality management system is considered. The river receives thermal as well as organic wastes. At-source treatment of these pollutants is imposed to control the basin-wide water quality. The related water quality standards are: the minimum DO concentration, the maximum allowable BOD concentration, the maximum allowable stream temperature, and the allowable rise in stream temperature. The general dynamic mathematical model representing water quality in streams and the thermal effects on BOD and DO concentrations is presented. The model is highly nonlinear in nature. The optimal management problem involving the model is solved by a recently developed nonlinear propgramming technique - the generalized reduced gradient (GRG) method. Comparison of results obtained by the GRG method vs. dynamic programming, and of results using a more realistic mathematical model vs. a simple model are presented. The analysis procedure can be applied to designing new and examining existing water quality programs, and to study the influence of alternate policies and constraints.  相似文献   

10.
Recycling irrigation reservoirs (RIRs) are an emerging aquatic ecosystem and water resource of global significance. This study investigated the vertical distribution of water temperature, dissolved oxygen (DO), and pH in eight RIRs at two nurseries each in Virginia and Maryland from 2011 to 2014. Monomictic thermal stratification was observed from April to October in all RIRs, despite their shallow depths (0.75‐3.89 m). The strongest stratification had a top‐bottom temperature difference of 21.53°C. The top‐bottom temperature difference was positively correlated with water column depth, air temperature, and daily light integral (< 0.05). Wind speed did not impact the thermal stratification, likely due to their relatively small surface areas. Thermal stratification affected the vertical distribution of DO and pH. The top‐bottom differences in DO and pH were greater during stratification periods than nonstratification periods. Water pH in all RIRs was higher at the top than at the bottom with the greatest difference of 4.16 units. Discovery and characterization of thermal stratification in RIRs helps understand water quality dynamics in this novel ecosystem and promote safe and productive water reuse for irrigation. Specifically, water withdrawal depths should be adjusted according to variations in temperature, DO, and pH during the stratification and nonstratification periods to mitigate pathogen risk and improve water treatment efficacy and crop production.  相似文献   

11.
ABSTRACT: This paper explores the use of nonlinear programming in river basin water quality modelling. Applications recently reported in the literature, along with the author's experience with nonlinear programming, are reviewed. Results obtained using nonlinear programming are compared with the results obtained by other researchers using linear and dynamic programming to solve river basin water quality optimization problems. These water quality models have objective functions with continuous first partial derivatives, several inequality and variable bound constraints, and are of the form: minizie Σj=nj=1Yj(Xj) subject to Σj=nj=1aijXjbi, i=1,2, …, m cjXjdj, j= 1,2, …, n The variable Xi is the maximum allowable ratio of the BOD (biochemical oxygen demand) of the effluent outflow to the BOD of the wastewater inflow for treatment plant j, in the range cj to dj. The aijd and bi are constants in the DO (dissolved oxygen) and BOD constraints. The resuks show, given certain assumptions about the data, that nonlinear programming is a better solution method for these problems than is either linear programming or dynamic programming.  相似文献   

12.
ABSTRACT: Ninety‐one sediment oxygen demand (SOD) samples from six designated sites along the stretch of Lower Rapid Creek, South Dakota, were conducted using an in‐situ SOD chamber. Inside the chamber, readings of dissolved oxygen (DO), water temperature, pH, and specific conductance were recorded every minute for more than one hour using the Datasonde 3 Hydrolab. Initial readings of such parameters were recorded for the overlaying water before the deployment of the SOD chamber. Characteristics of the stream conditions, air temperature, barometric pressure, average flow velocity of the stream, depth of the stream, and the flow velocity by the chamber were recorded. Single and multiple linear regression analyses on all parameters indicated that the velocity of the stream is the least critical parameter for SOD in shallow streams.  相似文献   

13.
ABSTRACT: Nine surface water‐quality variables were analyzed for trend at 180 Virginia locations over the 1978 to 1995 period. Median values and seasonal Kendall's tau, a trend indicator statistic, were generated for dissolved oxygen saturation (DO), biochemical oxygen demand (BOD), pH (PH), total residue (TR), nonfilterable residue (NFR), nitrate‐nitrite nitrogen (NN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and fecal coliform (FC) at each location. Each location was assigned to one of four physiographic regions, and mean state and regional medians and taus were calculated. Widespread BOD and NFR improvements were detected and FC improvements occurred in the state's western regions. TR and TKN exhibited predominantly increasing trends at locations throughout the state. BOD, TKN, NFR, and TR medians were higher at coastal locations than in other regions. NN, TKN, and TR exhibited predominantly increasing trends in regions with high median concentrations, while declining trends predominated in regions with relatively high BOD, FC, and NFR medians. Appalachian locations exhibited the greatest regional water‐quality improvements for BOD, FC, NFR, and TKN. Factors responsible for regional differences appear to include geology, land use, and landscape features; these factors vary regionally.  相似文献   

14.
The classical Streeter–Phelps models for Dissolved oxygen (DO) sag do not account for a significantly settleable portion (about 10% in treated to about 60% in the untreated wastewater discharged) of the total biochemical oxygen demand (BOD) inputs into rivers through wastewater outfalls, and therefore, they can not be used to predict the DO sag to any accuracy and rationality. The author’s rationally composited model for an accurate prediction of stream BOD, accounting for near linear removal of settleable BOD as well as simultaneous exponential decay of the non-settleable BOD, is used to predict the DO sag resulting from a multi-wastewater-outfall system, wherein the settling fields of some of the outfalls interfere and overlap. An illustrative case example has been presented to demonstrate use of the models evolved under varying locations of the multi-wastewater-outfalls. A universal and integrated PC based computer program can also be evolved for the computation of the overall resultant DO sag to confirm the manually computed DO sag.  相似文献   

15.
ABSTRACT: The risks associated with a traditional wasteload allocation (WLA) analysis were quantified with data from a recent study of the Upper Trinity River (Texas). Risk is define here as the probability of failing to meet an established in-stream water quality standard. The QUAL-TX dissolved oxygen (DO) water quality model was modified to a Monte Carlo framework. Flow augmentation coding was also modified to allow an exact match to be computed between the predicted and an established DO concentration standard, thereby providing an avenue for linking input parameter uncertainty to the assignment of a wasteload permit (allowable mass loading rate). Monte Carlo simulation techniques were employed to propagate input parameter uncertainties, typically encountered during WLA analysis, to the computed effluent five-day carbonaceous biochemical oxygen demand requirements for a single major wastewater treatment plant (WWTP). The risk of failing to meet an established in-stream DO criterion may be as high as 96 percent. The uncertainty associated with estimation of the future total Kjeldahl nitrogen concentration for a single tributary was found to have the greatest impact on the determination of allowable WWTP loadings.  相似文献   

16.
ABSTRACT: The Black River, a tributary of the Chehalis River in western Washington State, has a history of widespread low dissolved oxygen (DO), anoxia in some locations, and fish kills. As part of a Total Maximum Daily Load (TMDL) study, environmental data were collected during two summer dry seasons and simulations were conducted with the WASP5 model to assess the effect of biochemical oxygen demand ( BOD ), ammonia, and nutrient loads on DO in the Black River. DO levels were below the State water quality regulatory criterion of 8.0 mg/L in almost all locations during the study. The slow middle reach of the river showed stratified conditions, with anoxia in some of the deepest pools. Based on model simulations, DO was found to still fall below the 8.0 mg/L criterion in the entire mainstem under “natural” conditions, and eutrophication was identified as a potential problem in the middle reach. A TMDL was proposed for BOD and ammonia that would prevent significant degradation of DO in the Black River. To prevent eutrophic conditions in the Black River, a TMDL for total phosphorus was proposed that establishes a protective criterion of 0.05 mg/L for the middle river during the dry low-flow season.  相似文献   

17.
Summary The water qualities of the River Ganga (The Ganges) over a short stretch from Swarupganj to Barrackpore (in West Bengal) have been determined and are compared with the values reported by the National Environmental Engineering Research Institute of India for the periods 1972–74 and 1979–80. The water quality is generally bad, but not at such alarming levels as previously determined by other agencies. Biochemical and chemical oxygen demand (BOD and COD) levels are high but within tolerable limits. Dissolved oxygen (DO) levels are are fairly high, indicating a reasonable self-purifying capability for the River Ganga. However, nutrient loads containing N and P have increased enormously in recent years.  相似文献   

18.
A mechanistic understanding of the effects of nutrient enrichment in lotic systems has been advanced over the last two decades such that identification of management thresholds for the prevention of eutrophication is now possible. This study describes relationships among primary nutrients (phosphorus and nitrogen), benthic chlorophyll a concentrations, daily dissolved oxygen (DO) concentrations, and the condition of macroinvertebrate and fish communities in small rivers and streams in Ohio, USA. Clear associations between nutrients, secondary response indicators (i.e., benthic chlorophyll and DO), and biological condition were found, and change points between the various indicators were identified for use in water quality criteria for nutrients in small rivers and streams (<1300 km2). A change point in benthic chlorophyll a density was detected at an inorganic nitrogen concentration of 0.435 mg/l (±0.599 SD), and a total phosphorus (TP) concentration of 0.038 mg/l (±0.085 SD). Daily variation in DO concentration was significantly related to benthic chlorophyll concentration and canopy cover, and a change point in 24-h DO concentration range was detected at a benthic chlorophyll level of 182 mg/m2. The condition of macroinvertebrate communities was related to benthic chlorophyll concentration and both minimum and 24-h range of DO concentration. The condition of fish communities was best explained by habitat quality. The thresholds found in relationships between the stressor and the response variables, when interpreted in light of the uncertainty surrounding individual change points, may now serve as a framework for nutrient criteria in water quality standards.  相似文献   

19.
In South Asian countries such as Nepal, India, and Bangladesh, pollution of rivers is more severe and critical near urban stretches due to huge amounts of pollution load discharged by urban activities. The Bagmati River in the Kathmandu valley, the Yamuna River at Delhi, and peripheral rivers (mainly Buriganga River) of Dhaka suffer from severe pollution these days. The observed dry season average of biochemical oxygen demand (BOD) in all these rivers is in the range of 20–30 mg/liter and total coliform are as high as 104–105 MPN/100 ml. Per capita pollution load discharge of urban areas has been estimated to be about 31, 19, and 25 gBOD/capita/day in Bagmati, Yamuna, and the rivers of Dhaka, respectively. Regression analysis reveals pollution loads steadily increasing nearly in step with the trend in urbanization. The dissolved oxygen (DO) level of the Bagmati and Buriganga rivers is declining at an average annual rate of nearly 0.3 mg/liter/year. Unplanned urbanization and industrialization occurring in these cities may be largely responsible for this grave situation. Inadequate sewerage, on-site sanitation, and wastewater treatment facilities in one hand, and lack of effective pollution control measures and their strict enforcement on the other are the major causes of rampant discharge of pollutants in the aquatic systems.  相似文献   

20.
Several published BOD data sets are examined to show that approximately half of them are described best in the least squares sense by treating the BOD equation as being of the three-halves order instead of first order. A dissolved oxygen (DO) sag equation for a stream is developed in which the BOD is described as a three-halves order reaction. The time when the minimum DO concentration occurs is calculated numerically. The DO sag model applied to example problems shows that an increase in the BOD reaction rate constant results in a smaller minimum DO concentration and a decrease in the time to reach the minimum DO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号