首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

2.

Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

3.
Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

4.
This study was undertaken to obtain information about the behavior of sulfentrazone in soil by evaluating the sorption and desorption of the herbicide in different Brazilian soils. Batch equilibrium method was used and the samples were analyzed by high performance liquid chromatography. Based on the results obtained from the values of Freundlich constants (Kf), we determined the order of sorption (Haplic Planosol < Red-Yellow Latosol < Red Argisol < Humic Cambisol < Regolitic Neosol) and desorption (Regolitic Neosol < Red Argisol < Humic Cambisol < Haplic Planosol < Red-Yellow Latosol) of sulfentrazone in the soils. The process of pesticide sorption in soils was dependent on the levels of organic matter and clay, while desorption was influenced by the organic matter content and soil pH. Thus, the use of sulfentrazone in soils with low clay content and organic matter (low sorption) increases the probability of contaminating future crops.  相似文献   

5.
Evaluation of impacts of soil fractions on phenanthrene sorption   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Ma Y 《Chemosphere》2008,72(6):891-896
Phenanthrene sorption to soils and soil fractions was investigated using two contrasting soils with different clay mineral and organic carbon (OC) contents in an attempt to evaluate the contribution of each soil fraction to phenanthrene sorption and the applicability of the carbon-normalized distribution constant (K(OC)) in soils. Sorbents were characterized using surface analysis, solid-state (13)C NMR analysis, and glass transition temperature (T(g)) analysis to gain a insight into the chemical nature of OC in soils. Dissolved organic carbon (DOC) in the soil solution impeded the phenanthrene sorption, while humins accounted for the predominant phenanthrene sorption in soils. The contribution of OC to phenanthrene sorption in soil would be overestimated if only a K(OC)-approach was adopted, since clay minerals could account for much of the sorption, especially when OC was low in soils. Nitrogen gas was shown to be inappropriate for probing non-polar sorption capacity. The results obtained highlight the importance of clay minerals in governing the sorption of phenanthrene in soil, and emphasize the inapplicability of the carbon-normalized distribution coefficient K(OC) in soils.  相似文献   

6.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

7.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48-72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K(d)) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

8.
The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N,N-diethyl-2-(1-naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption-desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300-450 nm wavelength with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

9.
Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs approximately 3.0 and approximately 7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH approximately 7.0 than at pH approximately 3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH approximately 7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH approximately 3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH approximately 3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars.  相似文献   

10.
Carbendazim sorption-desorption in Vietnamese soils   总被引:2,自引:0,他引:2  
Four Vietnamese soils (denoted AG, CT, ST and TG) which differed with respect to pH (pH 2.9-5.4), clay (17-50%) and organic matter (0.3-9.8%) content, were selected for sorption and desorption studies of carbendazim using the batch equilibration technique. Sorption increased with increasing organic carbon (OC) and clay content. Kd values for carbendazim sorption on AG, CT, ST, TG soils at initial concentration of 20 microg/g were 12.5, 127, 8.1 and 9.6 ml/g, respectively. The OC partition coefficients (Koc) for AG, CT, ST and TG were 1140, 1300, 2700 and 960 ml/g, respectively. Carbendazim was strongly sorbed and the binding was less reversible in the acid sulfate soil (CT), than in the other soils. The CT soil had both the highest OC content (9.8%) and the highest clay content (49.8%). The influence of pH on carbendazim sorption was studied in the ST and CT soils. Sorption of carbendazim by the sandy ST soil (OC 0.3%; clay content 26.3%) increased as the pH decreased, while sorption of carbendazim by the CT soil decreased as pH decreased.  相似文献   

11.
This study investigates the influence of the two different clay minerals kaolinite and smectite as well as of organic matter on the cation sorption and desorption behaviour of three imidazolium based ionic liquids -1-butyl-3-methyl-imidazolium tetrafluoroborate (IM14 BF(4)), 1-methyl-3-octyl-imidazolium tetrafluoroborate (IM18 BF(4)) and 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide (IM14 (CF(3)SO(2))(2)N) - in soil. The German standard soil Lufa 2.2 - a natural soil classified as a loamy sand - was the basis substrate for the different soil compositions and also served as a reference soil. The addition of organic matter and clays increases the sorption of the substances and in particular smectite had striking effects on the sorption capacity for all three ionic liquids indicating that ionic interactions play an important role for sorption and desorption processes of ionic liquids in soil. One exception was for kaolinite-containing soils and the IM14 cation: with (CF(3)SO(2))(2)N(-) as an anion the sorption was identical at either 10 wt% or 15 wt% clay content, and with BF(4)(-) sorption was even lower at 15 wt% kaolinite than at 10 wt%. Desorption was weak for IM18 BF(4), presumably owing to the longer alkyl side chain. With regard to the influence of kaolinite on desorption, the same pattern was observed as it was found for the sorption of IM14 BF(4) and IM14 (CF(3)SO(2))(2)N.  相似文献   

12.
Imidacloprid, the major component of many widely used insecticide formulations, is highly persistent in soils. In this study, the sorption of imidacloprid by six soils as well as its photodegradation and hydrolysis in water were studied. The soils differed significantly in organic matter content and other physical and chemical properties. Sorption increased with increasing soil organic matter content but was not significantly correlated with other soil properties. Removal of organic matter via H2O2 oxidation decreased the sorption. By normalizing the Freundlich coefficients (Kf) to organic matter contents, the variability in obtained sorption coefficient (Kom) was substantially reduced. These results indicate that soil organic matter was the primary sorptive medium for imidacloprid. The low heat of sorption calculated from Kom suggests that partition into soil organic matter was most likely the mechanism. The photodegradation and hydrolysis of imidacloprid in water followed pseudo-first-order kinetics; however, the latter process needed a six-time-higher activation energy. While both processes produced the same main intermediate, they occurred via different pathways. The hydrolysis of imidacloprid was not catalyzed by the high interlayer pH in the presence of metal-saturated clays, which appeared to result from the lack of the pesticide adsorption in the interlayers of clays.  相似文献   

13.
The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone.  相似文献   

14.
Dahiya S  Shanwal AV  Hegde AG 《Chemosphere》2005,60(9):1253-1261
Zinc adsorption was studied in the soils of three nuclear power plant sites of India. 65Zn was used as a radiotracer to study the sorption characteristics of Zn(II). The sorption of zinc was determined at 25 and 45 degrees C at pH 7.8+/-0.2 in the solution of 0.01 M Ca(NO3)2 as supporting electrolyte. The sorption data was tested both in Freundlich and Langmuir isotherms and could be described satisfactorily. The effect of organic matter and other physico-chemical properties on the uptake of zinc was also studied in all the soil samples. The results showed that the cation exchange capacity, organic matter, pH and clay content were the main contributors to zinc sorption in these soils. The adsorption maximum was found to be higher in the soil on Kakarpara Atomic Power Plant sites soils having high organic matter and clay content. The zinc supply parameters of the soils are also discussed. In the desorption studies, the sequential extraction of the adsorbed zinc from soils showed that the diethylene triamine penta acetic acid extracted maximum amount of adsorbed zinc than CaCl2 and Mg(NO3)2. The zinc sorption on the soil and amount of zinc retention after extractants desorption shows a positively correlation with vermiculite and smectite mineral content present in the clay fraction of the soil. The amount desorbed by strong base (NaOH) and demineralised water was almost negligible from soils of all the sites, whereas the desorption by strong acid (HNO3) was 75-96% of the adsorbed zinc.  相似文献   

15.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

16.
Contamination of soil with pesticides can be evaluated using toxicity tests with worms because their ecological niche makes them good bioindicators. Bioaccumulation in compost worms of [methyl-14C] paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) was measured after three-month exposure in two substrates with differing physicochemical characteristics, in particular their organic matter and clay contents. The treatments were 1.2, 12, and 120 microg paraquat g(-1) substrate. The action of the worms did not influence the loss of 14C from the substrates, as the 14C-recovered was essentially quantitative at the end of the study in both the presence and absence of the worms. The organic matter and clay contents of the substrates determined the extent of the paraquat uptake by the worms; worms from the substrate with smaller amounts of clay and organic matter had the higher values of the bioconcentration factor (BCF), these being about 5 (fresh-weight basis) and independent of the application rate. The BCF values in the substrate containing more organic matter and clay were smaller but increased from 1.1 to 3.8 with the increasing rates of application. However, in both substrates the amounts of paraquat bioaccumulated in the worms was always less than 1% of that applied, indicating the very strong binding of paraquat to the substrates and hence low availability to the worms.  相似文献   

17.
Miretzky P  Bisinoti MC  Jardim WF 《Chemosphere》2005,60(11):1583-1589
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process.  相似文献   

18.
Using the soil-water sorption partitioning coefficient (Kd), this study quantified the spatial variation of 2,4-D sorption by soil in an undulating-to-hummocky terrain landscape near Minnedosa, MB, Canada. Herbicide sorption was most strongly related to soil organic matter content and slope position, with greatest sorption occurring in lower landscape positions with greater soil organic matter content. The relation between sorption and slope position was more pronounced under conventional tillage (CT) than under long-term zero-tillage (ZT). Using multivariate regression and three independent variables (soil organic matter content, soil clay content and soil pH), the prediction of herbicide sorption by soil was very good for CT (R2 = 0.89) and adequately for ZT (R2 = 0.53).  相似文献   

19.
This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2.4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 microg(1 - 1/n) g(-1) mL(1/n). First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

20.
The main objective of the present study was to assess the roles of various soil components in sorption of organic compounds differing in polarity. Removal of the whole soil organic matter decreased sorption by approximately 86% for nonpolar 1,3,5-trichlorobenzene (TCB), but only 34-54% for highly polar 1,3,5-trinitrobenzene (TNB); however, removal of the extractable humic/fulvic acids did not much affect sorption of the two sorbates. With normalization of solute hydrophobicity, TNB exhibits several orders of magnitude stronger sorption compared with TCB to maize burn residue (black carbon), extracted humic acid and Na+-saturated montmorillonite clay, suggesting specific sorptive interactions for TNB with the individual model soil components. It was proposed that sorption of TCB to the bulk soil was dominated by hydrophobic partition to the condensed, non-extractable fraction of organic matters (humin/kerogen and black carbon), while interactions with soil clay minerals were an important additional factor for sorption of TNB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号