首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

2.
This investigation was undertaken to determine the effect of amendment of two fly ashes [Kota and Inderprastha (IP)] on sorption behavior of metsulfuron-methyl in three Indian soil types. Kota fly ash (5%) did not show any effect on herbicide sorption while IP fly ash significantly enhanced the sorption. Further studies on metsulfuron-methyl sorption-desorption behavior in 0.5, 1, 2, and 5% IP fly ash-amended soils suggested that effect of fly ash varied with soil type and better effect was observed in low organic carbon content soils. The sorption-desorption isotherms fitted very well to the Freundlich sorption equation and, in general, slope (1/n) values less than unity were observed. Metsulfuron-methyl sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to the Freundlich sorption constant (K f), K FA values (sorption normalized to fly ash content) showed less variation. Metsulfuron-methyl leaching studies suggested greater retention of herbicide in the application zone in IP fly ash-amended soils, but effect varied with soil type and no herbicide leaching was observed in 5% fly ash-amended soils. The study suggested that all coal fly ashes are not effective in enhancing the sorption of metsulfuron-methyl in soils. However, one which enhanced herbicide sorption, could play an important role in reducing its leaching losses.  相似文献   

3.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

4.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15–92%, whereas with the Kota fly ash an increase in sorption by 13–38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to Kf/Kd values, KFA values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

5.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   

6.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

7.
Brazil is the largest sugarcane producer in the world in which hexazinone (3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) are heavily used. Sugarcane harvesting is changing from the manual system with previous straw burning to the mechanized system without straw burning. The lack of burning results in soil organic carbon accumulation mainly in clayey soils, which should affect herbicides availability and fate. Therefore, we evaluated sorption of these herbicides in soil samples with and without straw burning. Both herbicides presented low apparent sorption coefficients (mean Kd,app= 0.6 and 2.4 L kg?1 for hexazinone and tebuthiuron, respectively), suggesting that they may leach to groundwater. Moreover, their sorption correlated primarily with soil organic carbon (SOC), but iron oxide contents extracted with ammonium oxalate (Fe2O3AOX) also affected it (Kd,app = ?0.228 + 0.0397 SOC + 0.117 Fe2O3AOX for hexazinone and Kd,app = ?1.407 + 0.201 SOC + 0.348 Fe2O3AOX for tebuthiuron). Soil organic carbon accumulation due to straw maintenance in the field positively affected sorption of both herbicides, but its effects were not enough to classify them as “non-leachers.”  相似文献   

8.
Sulfonylurea herbicides are widely used in crop production on the Canadian prairies and a portion of these herbicides applied to cropland are inevitably lost to surrounding aquatic ecosystems. Little is known regarding the presence of sulfonylurea herbicides in wetlands located amongst cropland. This paper describes a new analytical method for the extraction and the determination of seven sulfonylurea herbicides (thifensulfuron-methyl, tribenuron-methyl, ethametsulfuron-methyl, metsulfuron-methyl, rimsulfuron, nicosulfuron and sulfosulfuron) in wetland sediment. The method provided > 85% analyte recovery from fortified sediment for six of the seven sulfonylurea herbicides with a limit of quantification (LOQ) of 1.0 μ g kg? 1. Tribenuron-methyl had significantly lower recovery compared to the other six sulfonylurea herbicides (LOQ = 2 μ g kg? 1). Mean recovery standard deviations were < 10%. This methodology was used to quantify sulfonylurea herbicide residues in sediment samples collected from prairie wetlands situated within the agricultural landscape of Saskatchewan and Manitoba, Canada. This is the first-known detection of sulfonylurea herbicide residues in prairie wetland sediments. Ethametsulfuron-methyl, sulfosulfuron and metsulfuron-methyl, the three most environmentally persistent of the seven sulfonylurea herbicides monitored in the surveillance component of this study, were most frequently detected in wetland sediment with mean concentrations ranging from 1.2 to 10 μ g kg? 1.  相似文献   

9.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

10.
The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f c ≤ 0.4) and ionic compositions (CaCl2 and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K m values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f c. However, the K m values of 1-NAPA with both ionic compositions remained relatively constant over the f c range. For the model sorbent, the K m values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f c, while the sorption of 1-NAPA with kaolinite for the CaCl2 system was increased with f c. From the solubility data of 1-NAPA with f c, no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required.  相似文献   

11.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

12.
Sorption and desorption of aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid) were compared to that of the structurally similar herbicide picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) in three soils of differing origin and composition to determine if picloram data is representative of aminocyclopyrachlor behavior in soil. Aminocyclopyrachlor and picloram batch sorption data fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram (1/n = 0.80–0.90). Freundlich sorption coefficients (K f) for aminocyclopyrachlor were lowest in the eroded and depositional Minnesota soils (0.04 and 0.12 μmol (1–1/n) L1/n kg?1) and the highest in Molokai soil (0.31 μmol (1–1/n) L1/n kg?1). For picloram, K f was lower in the eroded (0.28 μmol (1–1/n) L1/n kg?1) as compared to the depositional Minnesota soil (0.75 μmol (1–1/n) L1/n kg?1). Comparing soil to soil, K f for picloram was consistently higher than those found for aminocyclopyrachlor. Desorption of aminocyclopyrachlor and picloram was hysteretic on all three soils. With regard to the theoretical leaching potential based on groundwater ubiquity score (GUS), leaching potential of both herbicides was considered to be similar. Aminocyclopyrachlor would be ranked as leacher in all three soils if t1/2 was > 12.7 days. To be ranked as non-leacher in all three soils, aminocyclopyrachlor t1/2 would have to be <3.3 days. Calculated half-life that would rank picloram as leacher was calculated to be ~15.6 d. Using the current information for aminocycloprachlor, or using picloram data as representative of aminocycloprachlor behavior, scientists can now more accurately predict the potential for offsite transport of aminocycloprachlor.  相似文献   

13.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

14.

The objectives of this study were to assess sorption and desorption of tylosin, a macrolide antimicrobial chemical used in swine, cattle, and poultry production, in three silty clay loam soils of South Dakota and compare soil sorption to sand and manure sorption. The silty clay loam soils, from a toposequence in eastern South Dakota, standardized sand samples, and swine manure were used in 24-h batch sorption studies with tylosin concentrations ranging from 25 to 232 μ mole/L. Desorption from soil was conducted over a four-day period. Partition coefficients, based on the Freundlich isotherm (K f ) or K d values, were calculated. K f values for the silty clay loams were similar, not influenced by landscape position, and averaged 1350 with isotherm slopes ranging from 0.85 to 0.93. K f values for sand were dependent on solution/sand ratios and pH, ranging from 1.4 to 25.1. K d values of manure were dependent on the solution type and ranged from 840 L/kg with urine to about 175 L/kg when sorbed from water. Desorption of tylosin from each soil over the four-day period was < 0.2% of the amount added. The soils' high K f values and low desorption amounts suggest that once tylosin is in these soils, leaching to lower depths may not occur. However, this does not preclude runoff with soil eroded particles. If tylosin reaches a sand aquifer, through bypass flow or other mechanism(s), movement in the aquifer most likely would occur.  相似文献   

15.
Indaziflam is a relatively new herbicide for which sorption–desorption information is lacking, and nothing is available on its metabolites. Information is needed on the multiple soil and pesticide characteristics known to influence these processes. For four soils, the order of sorption was indaziflam (N-[1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 5.9, 1/nf = 0.7, Kfoc = 447; sandy loam: Kf = 3.9, 1/nf = 0.9, Kfoc = 276) > triazine indanone metabolite (N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-3-oxo-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 2.1, 1/nf = 0.8, Kfoc = 177; sandy loam: Kf = 1.7, 1/nf = 0.9, Kfoc = 118) > fluoroethyldiaminotriazine metabolite (6-[(1R-1-Fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 28; sandy loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22) = indaziflam carboxylic acid metabolite (2S,3R)-3-[[4-amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,3-dihydro-2-methyl-1H-indene-5-carboxylic acid) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22; sandy loam: Kf = 0.5, 1/nf = 0.8, Kfoc = 32). The metabolites being more polar than the parent compound showed lower sorption. Desorption was hysteretic for indaziflam and triazine indanone metabolite, but not for the other two metabolites. Unsaturated transient flow Kd's were lower than batch Kd's for indaziflam, but similar for fluoroethyldiaminotriazine metabolite. Batch Kd's would overpredict potential offsite transport if desorption hysteresis is not taken into account.  相似文献   

16.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

17.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

18.
19.

Paraquat adsorption, degradation, and remobilization were investigated in representative tropical soils of Yom River Basin, Thailand. Adsorption of paraquat in eight soil samples using batch equilibration techniques indicated that adsorption depended on soil characteristics, including exchangeable basic cations and iron content. Multiple regression analysis indicated significant contribution of exchangeable calcium percentage (ECP), total iron content (TFe) and exchangeable sodium percentage (ESP) to paraquat sorption (Q). ESP and TFe were significant at all adsorption stages, whereas ESP was significant only at the initial stage of paraquat adsorption. Adsorption studies using two soils representing clay and sandy loam textures showed that paraquat adsorption followed the Freundlich model, exhibiting a nonlinear sorption curve. Paraquat adsorption was higher in the clay soil compared to the sandy loam soil with K f values of 787 and 18, respectively. Desorption was low with 0.04 to 0.17% and 0.80 to 5.83% desorbed in clay and sandy loam soil, respectively, indicating some hysteresis effect. Time-dependent paraquat adsorption fitted to the Elovich kinetic model indicated that diffusion was a rate-limiting process. Paraquat mobility and degradation studies conducted using both field and laboratory soil column experiments with clay soil showed low mobility of paraquat with accumulation only in the surface 0–5 cm layer under field conditions and in the 0–1 cm layer in a laboratory soil column experiment. Degradation of paraquat in soil was faster under field conditions than at ambient laboratory conditions. The degradation rate followed a first-order kinetic model with the DT50 at 36–46 days and DT90 around 119–152 days.  相似文献   

20.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号