首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analysed growth strategies (biomass allocation, nutrient sequestration and allocation) of heather (Calluna vulgaris) and purple moor-grass (Molinia caerulea) seedlings in monocultures and mixtures in relation to N, P, and N + P fertilisation in a greenhouse experiment in order to simulate a heath’s pioneer phase under high airborne nitrogen (N) loads. N fertilisation increased the total biomass of both species in monocultures. In mixtures, M. caerulea sequestered about 65% of the N applied, while C. vulgaris suffered from N shortage (halving of the total biomass). Thus, in mixtures only M. caerulea will benefit from airborne N loads, and competition will become increasingly asymmetric with increasing N availability. Our results demonstrate that the heath’s pioneer phase is the crucial tipping point at which the competitive vigour of M. caerulea (high belowground allocation, efficient use of belowground resources, shortened reproductive cycles) induces a shift to dominance of grasses under increased N availability.  相似文献   

2.
Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 microl l(-1) NH3 (2.8 mg m(-3)), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH3. NH3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH3 exposure. In sulfate-deprived plants an inhibitory effect of NH3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed.  相似文献   

3.
In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as ‘fast-grower’ or ‘slow-grower’ species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing ‘fast-grower’ and ‘slow-grower’ strategies and outlining applications for remediation practices.  相似文献   

4.
To determine if ozone (O3) and root zone temperature (RZT) affect plant biomass allocation and photosynthesis, radish (Raphanus sativus) plants were grown in controlled environment laboratory chambers in one of four treatments: episodic O3 (average delivery 0.063 mumol mol-1) with RZT at 13 degrees C, episodic O3 (same delivery) with RZT at 18 degrees C, charcoal-filtered air with RZT at 13 degrees C and charcoal-filtered air with RZT at 18 degrees C. O3 reduced total biomass and shoot biomass of radish at 13 degrees C RZT but had no effect at 18 degrees C RZT. Low (13 degrees C) RZT decreased total biomass in both O3 and charcoal-filtered air. RZT had no overall effect on biomass allocation, but O3 lowered root-to-shoot ratios for plants grown at 18 degrees C RZT. Photosynthesis was reduced for plants grown at 18 degrees C RZT and O3, but stomatal conductance was not affected by O3 nor RZT. These results indicate that O3 and low RZT decrease biomass, but that plant photosynthesis is decreased by O3 and warm RZT.  相似文献   

5.
The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha−1 yr−1) and increasing background ozone (O3) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O3 treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-Ci curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O3 reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O3 and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species.  相似文献   

6.
7.
The ability of individual species to tolerate or accumulate heavy metal pollutants has been investigated widely. Although invasive species may become established more easily in disturbed environments, relatively little is known about how an ability to tolerate pollutants might give invasive species a competitive advantage. This study is part of a series of experiments investigating native and invasive species interactions with chemical pollution and other forms of disturbance. The purpose of this experiment was to investigate the effects of lead on the growth of Lythrum salicaria. We exposed plants to different concentrations of lead and measured different growth parameters, such as biomass, length, leaf number, and biomass allocation to roots. For most measures, plants grown in lead-free conditions were larger than plants exposed to lead. Plants in the low (500 mg/l) and medium (1,000 mg/l) lead treatments did not differ from each other, while plants in the high (2,000 mg/l) lead treatment were significantly smaller. However, the biomass allocation to roots was not significantly different among treatments. Although their growth is affected, individuals of Lythrum salicaria demonstrated tolerance to lead contamination, which may aid in their colonization in lead-polluted wetlands.  相似文献   

8.
Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the P?íbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants’ aboveground and belowground biomass and in woody plants’ leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg?1 in twigs and 16.74 and 1188 mg kg?1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg?1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.  相似文献   

9.
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.  相似文献   

10.
Here we synthesize key findings from a series of experiments to gain new insight on inter-plant competition between juvenile beech (Fagus sylvatica) and spruce (Picea abies) under the influence of increased O3 and CO2 concentrations. Competitiveness of plants was quantified and mechanistically interpreted as space-related resource investments and gains. Stable isotopes were addressed as temporal integrators of plant performance, such as photosynthesis and its relation to water use and nitrogen uptake. In the weaker competitor, beech, efficiency in space-related aboveground resource investment was decreased in competition with spruce and positively related to Δ13C, as well as stomatal conductance, but negatively related to δ18O. Likewise, our synthesis revealed that strong belowground competition for water in spruce was paralleled in this species by high N assimilation capacity. We suggest combining the time-integrative potential of stable isotopes with space-related investigations of competitiveness to accomplish mechanistic understanding of plant competition for resources.  相似文献   

11.
Herein, we explore the outlines of an innovative method based on the chemical recovery of metal-rich biomass produced in phytoextraction technologies. Taking advantage of the adaptive capacity of some New Caledonian plants to hyperaccumulate Ni2+ cations in their aerial parts, this technique is based on the direct use of metals derived from plants as “Lewis acid” catalysts in organic chemistry. Metallic cations contained in New Caledonian nickel hyperaccumulators are recovered through a simple cost-effective process and serve the preparation of heterogeneous catalysts used in synthetic transformations allowing access to molecules with high added-value. The design of all processes is in line with the principles of green chemistry; it is adapted to the new economic constraints; it offers a new relevant outlet for metal-rich biomass; and it represents an alternative to non-renewable mineral materials.  相似文献   

12.
A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg−1) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.  相似文献   

13.
The impairment of root growth and photosynthetical functioning are the main impacts of trace elements on woody plant seedlings. In this work, we assessed the response of Holm oak (Quercusilex subsp. ballota) and mastic shrub (Pistacia lentiscus) seedlings to high concentrations of Cd and Tl in the rhizosphere. These are non-essential trace elements, with a potential high mobility in the soil-plant system. Seedlings of these species are frequently used in the afforestation of degraded soils in mining areas. Plants were exposed to different levels of Cd (20, 80 and 200 mg L−1) and Tl (2, 10 and 20 mg L−1) in a sand culture. Biomass allocation, growth rates, chlorophyll fluorescence and gas exchange were studied. Both metals affected root biomass. Cadmium produced an increase in the root mass ratio and a decrease in the specific leaf area of the plants in oak seedlings, while Tl did not provoke such response. Mastic plants were more sensitive to Tl and Cd than oak plants. Between elements, Tl provoked more severe toxic effects in the plants, affecting the antennae complexes and reaction centers of the photosystem II. Both elements decreased net assimilation rates (down to a 20% of the control plants) and stomatal conductance (5-10% of the values for the control plants). Cadmium was highly retained in the roots of both species, while Tl was highly translocated into the leaves. In general, Holm oak showed a higher tolerance for Cd than for Tl, and a higher resistance to both metals than mastic shrub, due to a high capacity for Cd retention at the root level. However, such accumulation in roots may induce water stress in the seedling exposed to Cd.  相似文献   

14.
Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.  相似文献   

15.
Both eutrophication and SO4 pollution can lead to higher availability of nutrients and potentially toxic compounds in wetlands. To unravel the interaction between the level of eutrophication and toxicity at species and community level, effects of SO4 were tested in nutrient-poor and nutrient-rich fen mesocosms. Biomass production of aquatic and semi-aquatic macrophytes and colonization of the water layer increased after fertilization, leading to dominance of highly competitive species. SO4 addition increased alkalinity and sulphide concentrations, leading to decomposition and additional eutrophication. SO4 pollution and concomitant sulphide production considerably reduced biomass production and colonization, but macrophytes were less vulnerable in fertilized conditions. The experiment shows that competition between species, vegetation succession and terrestrialization are not only influenced by nutrient availability, but also by toxicity, which strongly interacts with the level of eutrophication. This implies that previously neutralized toxicity effects in eutrophied fens may appear after nutrient reduction measures have been taken.  相似文献   

16.
Overgrowth of aquatic plants, such as water chestnut, has been reported as a regional problem in various areas. We proposed cascade utilization of water chestnut through the recovery of phenolics, phosphorus, and sugars. Phenolics were extracted using 50 g (wet weight) of biomass with 300 mL of acetone, methanol, or hot water, and the yields of total phenolics were 80.2, 56.2, and 49.7 mg?g?1 dry weight of native biomass, respectively. The rate of eluted phosphorus in the phenolic extraction step was 8.6, 14.8, and 45.3 % of that in the native biomass, respectively, indicating that the use of polar organic solvents suppressed phosphorus elution at the phenolic extraction step. Extraction of phosphorus following the phenolic extraction was combined with alkaline pretreatment (1 % NaOH solution) of biomass for saccharification; 64.1 and 51.0 % of phosphorus in the native biomass were extracted using acetone and methanol for the phenolic extraction, respectively. Saccharification following the alkaline pretreatment showed that the glucose recovery rates were significantly increased (p?<?0.05) with the phenolic extraction step compared to alkaline pretreatment alone. This finding indicates that extraction of phenolics not only provides another useful material but also facilitates enzymatic saccharification.  相似文献   

17.
Phosphogypsum (PG) is a by-product of the phosphorus–fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum. A pot experiment was carried out under greenhouse conditions. Transgenic A. thaliana plants harbouring the TaVP1 gene were grown on various substrates containing phosphogypsum (0, 25, 50 and 100 %) for 40 days. At the end of the growth period, we examined the growth (germination, root length, fresh weight) and physiological parameters (chlorophyll and protein contents, catalase activity and proteolysis) as well as the cadmium, Mg, Ca, and P contents of the A. thaliana plants. In order to evaluate Cd tolerance of the A. thaliana lines harbouring the TaVP1 gene, an in vitro experiment was also carried out. One week-old seedlings were transferred to Murashige and Skoog agar plates containing various concentrations of cadmium; the germination, total leaf area and root length were determined. The growth and physiological parameters of all A. thaliana plants were significantly altered by PG. The germination capacity, root growth and biomass production of wild-type (WT) plants were more severely inhibited by PG compared with the TaVP1 transgenic A. thaliana lines. In addition, TaVP1 transgenic A. thaliana plants maintained a higher antioxidant capacity than the WT. Interestingly, elemental analysis of leaf material derived from plants grown on PG revealed that the transgenic A. thaliana line accumulated up to ten times more Cd than WT. Despite its higher Cd content, the transgenic A. thaliana line performed better than the WT counterpart. In vitro evaluation of Cd tolerance showed that TaVP1 transgenic A. thaliana lines were more Cd-tolerant than the WT plants. These results suggested that ectopic expression of a vacuolar proton pump in A. thaliana plants can lead to various biotechnological applications including the phytoremediation of industrial wastes.  相似文献   

18.
The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha−1, corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses <60 g a.e. ha−1. This initial growth boost kept treated plants larger than untreated plants for up to six weeks, but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed.  相似文献   

19.
Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.  相似文献   

20.
Abstract

Tomato is considered one of the most sensitive crops regarding 2,4-D drift. In many cases, such susceptibility has led to important restrictions in the use of 2,4-D based products. Field experiments were carried out for two consecutive years in tomato, by applying sublethal doses of 2,4-D (ranging from 0.42 to 13.44 g a.i. ha?1) directly to plants, at different stages of growth, as a simulation of eventual drifts to the crop. The range of rates was based on the assumption of a 0.0625–2.0% drift level of a 1 L ha?1 of the most common formulated herbicides. For this crop, the range of rates between 0.42 and 13.44 g a.i ha?1 applied at the beginning of flowering caused a linear crop reduction. On the other hand, rates ≤13.44 g a.i. ha?1 applied after full development of fourth truss stage or latter had no effect on crop yield or development. For tomato, tolerance to 2,4-D strongly increases with plant age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号