首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemical degradation of methylparathion (O,O,-dimethyl O-4 nitrophenylphosphorothioate) in the presence of humic acid between pH 2 and 7 was monitored by differential pulse polarography. Humic acid was not electro-active under the experimental conditions used in this study. Only the pesticide and its main degradation product at pH 2 exhibited polarographic signals. Photolysis of methylparathion in acid media was sensitized by humic acid since the pesticide did not degrade in the absence of this compound. Methylparathion degradation in the presence of humic acid was observed at each of the studied pHs. The reaction was first-order with rate constant values ranging from 2 × 10?3 to 6.3 × 10?3 min?1.  相似文献   

2.
A study was undertaken to determine the transformation kinetic of methylparathion (O, O, -dimethyl O-4 nitrophenylphosphorotioate) in the presence of Fe(III) between pH 2 and 7. The Fe(III) was not electroactive under the conditions used in this study, and polarographic signals were exhibited by methylparathion and main degradation product only. Data suggest that hydrolysis of methylparathion in an acid medium is catalyzed by Fe(III) and the pesticide did not degrade in this medium without this cation. Methylparathion degradation was observed at all the pHs studied and was independent of the predominant chemical form of Fe(III) in the aqueous medium. The reaction was first-order with pH-dependent rate constant (k) values ranging from 3.3 × 10? 3 h? 1 to 7.0 × 10? 3 h? 1. The k values increased as pH decreased, suggesting that Fe(III) acted as an electrophile in the reaction mechanism.  相似文献   

3.
Abstract

A study was undertaken to determine the effect of Cu(II) in degradation of methylparathion (o,o-dimethyl o, 4-nitrophenyl phosphoriotioate) in acid medium. Initial electrochemical characterization of Cu(II) and methylparathion was done in an aqueous medium at a pH range of 2–7. Cu(II) was studied in the presence of different anions and it was observed that its electroactivity depends on pH and is independent of the anion used. Methylparathion had two reduction signals at pH ≤ 6 and only one at pH > 6. The pesticide's transformation kinetic was then studied in the presence of Cu(II) in acid buffered aqueous medium at pH values of 2, 4, and 7. Paranitrophenol appeared as the only electroactive product at all three pH values. The reaction was first order and had k values of 5.2 × 10?3 s?1 at pH 2, 5.5 × 10?3 s?1 at pH 4 and 9.0 × 10?3 s?1 at pH 7. It is concluded that the principal degradation pathway of methylparathion in acid medium is a Cu(II) catalyzed hydrolysis reaction.  相似文献   

4.
Photochemical degradation of methylparathion (O,O,-dimethyl O-4 nitrophenylphosphorothioate) in the presence of humic acid between pH 2 and 7 was monitored by differential pulse polarography. Humic acid was not electro-active under the experimental conditions used in this study. Only the pesticide and its main degradation product at pH 2 exhibited polarographic signals. Photolysis of methylparathion in acid media was sensitized by humic acid since the pesticide did not degrade in the absence of this compound. Methylparathion degradation in the presence of humic acid was observed at each of the studied pHs. The reaction was first-order with rate constant values ranging from 2 x 10(-3) to 6.3 x 10(-3) min(-1).  相似文献   

5.

This paper reports the effect of ultraviolet radiation on the degradation of pesticide ethyl parathion in the presence of humic acids. Ethyl parathion was completely degraded in 300 min using an artificial lamp of 7.41 × 10? 10 einstein/s. Humic acid from peat did not influence the photochemical rate (k = 8.92 × 10?3 min). However, in the presence of aquatic humic acid, the photochemical rate was higher (11.5 × 10?3 min). The analytical determinations show the presence of p-nitrophenol and aminophenol in the reaction medium during the photochemical experiments. The kinetic of degradation in all experiments obeyed a first-order reaction pattern.  相似文献   

6.
A study was undertaken to determine the transformation kinetic of methylparathion (O, O, -dimethyl O-4 nitrophenylphosphorotioate) in the presence of Fe(III) between pH 2 and 7. The Fe(III) was not electroactive under the conditions used in this study, and polarographic signals were exhibited by methylparathion and main degradation product only. Data suggest that hydrolysis of methylparathion in an acid medium is catalyzed by Fe(III) and the pesticide did not degrade in this medium without this cation. Methylparathion degradation was observed at all the pHs studied and was independent of the predominant chemical form of Fe(III) in the aqueous medium. The reaction was first-order with pH-dependent rate constant (k) values ranging from 3.3 x 10(- 3) h(- 1) to 7.0 x 10(- 3) h(- 1). The k values increased as pH decreased, suggesting that Fe(III) acted as an electrophile in the reaction mechanism.  相似文献   

7.
Zero-valent iron nanoparticles (nZVI, diameter < 90 nm, specific surface area = 25 m2 g?1) have been used under anoxic conditions for the remediation of pesticides alachlor and atrazine in water. While alachlor (10, 20, 40 mg L?1) was reduced by 92–96% within 72 h, no degradation of atrazine was observed. The alachlor degradation reaction was found to obey first-order kinetics very closely. The reaction rate (35.5 × 10?3–43.0 × 10?3 h?1) increased with increasing alachlor concentration. The results are in conformity with other researchers who worked on these pesticides but mostly with micro ZVI and iron filings. This is for the first time that alachlor has been degraded under reductive environment using nZVI. The authors contend that nZVI may prove to be a simple method for on-site treatment of high concentration pesticide rinse water (100 mg L?1) and for use in flooring materials in pesticide filling and storage stations.  相似文献   

8.
The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10?2 and 4.5 × 10?3 μgg?1 day?1) and sediment phase (7.9 × 10?3 and 1.5 × 10?3 μgg?1 day?1) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10?3 μgg?1 day?1) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10?3 μgg?1 day?1) and to microbial degradation (9.8 × 10?3 μgg?1 day?1). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.  相似文献   

9.
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10?2, 1.87 × 10?3 and 5.70 × 10?4, respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10?4 and 1.05 × 10?4, respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.  相似文献   

10.
Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298?±?2 K) and atmospheric pressure (708?±?8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm3 molecule?1 s?1): (3.27?±?0.33)?×?10?11 and (4.43?±?0.42)?×?10?11, for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm3 molecule?1 s?1): k3 (CH2═CHC(O)O(CH2)5CH3?+?Cl)?=?(3.31?±?0.31)?×?10?10, k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?Cl)?=?(3.46?±?0.31)?×?10?10, k5(CH2═CHC(O)O(CH2)5CH3?+?OH)?=?(2.28?±?0.23)?×?10?11, and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?OH)?=?(2.74?±?0.26)?×?10?11. The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in –C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.  相似文献   

11.
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 103 cfu mL?1. During continuous treatment, 100% degradation was observed at 100 mL h?1 flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h?1 and 100 mL h?1 flow rate respectively. The products of degradation detected by liquid chromatography–mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.  相似文献   

12.
Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8?±?0.5?×?10?6 mol plant?1 (Mn), 1.4?±?0.1?×?10?3 mol plant?1 (Fe), and 1.0?±?0.1?×?10?4 mol plant?1 (Al) in spiked soil without CA to 22.2?±?0.5?×?10?6 mol plant?1 (Mn), 3.5?±?0.06?×?10?3 mol plant?1 (Fe), and 5.0?±?0.2?×?10?4 mol plant?1 (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.  相似文献   

13.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

14.
The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm?3 phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45?×?10?3 and 20.12?×?10?3) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.  相似文献   

15.
Currently, butter and margarine are food products attracting wide customer interest. Every day, consumers around the world buy these products for human consumption. Butter is obtained from milk fat, while margarine is derived from vegetable oils. The content of organochlorine pesticide (OCP) residues was examined in both types of these high fatty products. A gas chromatograph with MSD (HP 5973) detector was used for the determination of pesticides such as α-HCH, β-HCH, γ-HCH, DDT, DDD, DDE, aldrin, dieldrin, endrin, heptachlor and heptachlor epoxide. The examined products had diverse concentrations of the analyzed compounds. Visible was the division based on the origin of the product, which might be composed of animal or vegetable fats. The research has revealed the presence of OCP residues in all examined spreads. Quantities of organochlorine compounds did not pose an immediate danger to the consumers’ health. Human and environmental health risk assessment was carried out by the estimation of lifetime average daily dose (LADD) and non-carcinogenic health hazard quotient (HQ). Total estimated LADD ranged between 1.3 × 10?5 and 3.1 × 10?5 mg kg?1 d?1 for butter, and 1.9 × 10?6 and 4.6 × 10?6 mg kg?1 d?1 for margarine and mix spread. The HQ ranged between 1.1 × 10?4 and 3.7 × 10?4 for butter, and 1.4 × 10?5 and 9.0 × 10?6 for margarine and mix spread for adults. These estimated HQs were within the safe acceptable limits, indicating a negligible risk to the residents of the study area.  相似文献   

16.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

17.
A photochemical reactor for studies of atmospheric kinetics and spectroscopy has been built at the Copenhagen Center for Atmospheric Research. The reactor consists of a vacuum FTIR spectrometer coupled to a 100 L quartz cylinder by multipass optics mounted on electropolished stainless steel end flanges, surrounded by UV-A, UV-C and broadband sun lamps in a temperature-controlled housing. The combination of a quartz vessel and UV-C lamps allows higher concentrations of O(1D) and OH than can be generated by similar chambers. The reactor is able to produce radical concentrations of ca. 8 × 1011 cm?3 for OH, 3 × 106 cm?3 for O(1D), 3.3 × 1010 cm?3 for O(3P) and 1.6 × 1012 cm?3 for Cl. The reactor can be operated at pressures from 10?3 to 103 mbar and temperatures from 240 to 330 K. As a test of the system we have studied the reaction CHCl3 + Cl using the relative rate technique and find kCHCl3+Cl/kCH4+Cl = 1.03 ± 0.11, in good agreement with the accepted value.  相似文献   

18.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at λ = 254 nm. The photolysis of (α + β: 2 + 1) endosulfan, α-endosulfan and β-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 × 10?4 s?1; 1 × 10?4 s?1; and 2 × 10?5 s?1, respectively, and the calculated quantum yields (φ) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

19.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

20.
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8?±?0.1)?×?109 M?1 s?1 by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号