首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解地铁环境空气污染状况,改善乘客和工作人员的环境,采用激光粉尘仪对北京地铁站外以及西直门(敞开式系统)、五道口(半高安全门系统)、西土城(全高安全门系统)和北土城(屏蔽门系统)等典型地铁系统站台和车厢空气中的细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))在列车驶入前后的浓度(指质量浓度)大小,以及站台和车厢空气中PM_(2.5)和PM_(10)浓度随时间的变化规律进行了研究,并分析了PM_(2.5)与PM_(10)的浓度比值,以及地铁站外、站台与车厢空气中PM_(2.5)和PM_(10)源的相关性。结果表明:外界雾霾严重时,站内空气污染加重,地铁驶入后引起PM_(10)浓度增加,屏蔽门和车门的打开使得站台和车厢空气中的PM_(10)颗粒物浓度加速上升,以PM_(2.5)为主,且其浓度的变化随屏蔽门的启闭呈现一定的规律性。  相似文献   

2.
雾炮作业已经被许多城市作为降低空气颗粒物(PM)浓度的常规手段在使用,但其对PM浓度的降低效果如何目前缺少深入研究。文章通过对受雾炮作业影响和不受其影响监测站空气PM浓度对比分析,就不同条件下雾炮作业降低空气PM浓度问题进行了研究。结果表明,雾炮车对降低城市空气中PM浓度效果非常有限,PM_(10)和PM_(2.5)浓度的降幅为0~2%,有效作用时长为10~15 min,在5~10 min时效果较好;雾炮作业对空气中PM_(2.5)的降低率略高于PM_(10);雾炮作业在污染物浓度上升期、PM_(10)和PM_(2.5)浓度为优和轻度污染、高相对湿度环境下效果更好,原因可能是这些环境条件下有利于雾炮产生的雾滴在空气中的存留。文章研究结果对于规范当前中国城市的雾炮作业具有一定的指导意义。  相似文献   

3.
重庆市大气颗粒物污染特征及影响因素分析   总被引:2,自引:1,他引:1  
杨显双  伍丽梅 《环境工程》2016,34(3):97-101
利用重庆市17个大气自动站实时发布的数据,对PM_(2.5)与PM_(10)污染特征、变化规律与气象因子的相关性进行了分析。结果表明:2013年PM_(2.5)和PM_(10)的年均值分别为70,106μg/m3,均超过国家Ⅱ级标准。月均值、季均值变化明显,总体均呈两头高中间低的"U"型分布。2013年PM_(2.5)占PM_(10)的比例较大,均值为65.8%,PM_(2.5)和PM_(10)的Pearson相关系数为0.974,在0.01的置信水平上(双侧)显著相关。PM_(2.5)、PM_(10)的浓度与气温、大气压极显著相关;PM_(2.5)、PM_(10)的浓度与降雨量、日照时数(时)显著相关。  相似文献   

4.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

5.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

6.
于霄  郝晋靓  陈璐  徐斌 《环境工程》2019,37(5):129-133
地铁交通系统内空气质量因对乘客健康具有明显影响而逐渐受到了重视,为了准确判断影响地铁交通系统空气污染物的各类因素,以上海市地铁10号线同济大学站为例,利用便携式测量仪器,分析了室外大气空气质量,客流量以及通风条件对地铁站内空气中PM_(2.5),CO_2浓度的影响。结果表明:地铁站空气中PM_(2.5)的浓度受室外大气空气质量的影响较大,室外大气与地铁站空气中PM_(2.5)的浓度具有较强的相关性,二者变化趋势一致;乘客呼吸是导致地铁站空气中CO_2浓度变化的主要原因,CO_2浓度随乘客数量的增加呈上升趋势;地铁站的通风条件显著影响空气的流动情况,通风条件越好,越有利于空气污染物的扩散,从而可有效降低空气中PM_(2.5)和CO_2的浓度水平。  相似文献   

7.
基于2013年12月和2014年全年宝鸡市8个自动空气质量监测子站的PM_(10)和PM_(2.5)的监测数据,探讨PM_(10)和PM_(2.5)的时间分布特征和空间分布特征。结果表明:PM_(10)的日平均浓度为118.23μg/m~3,全年中PM_(10)超过二级标准的天数为80 d,超标率为22%;PM_(2.5)的日平均浓度为68.93μg/m~3,全年中PM_(2.5)超过二级标准的天数为92 d,超标率为25%;PM_(10)和PM_(2.5)的浓度有明显的季节差异。PM_(2.5)和PM_(10)浓度由高到低的季节依次是冬季、春季、秋季和夏季;不同的监测点位中,解放军第三陆军医院监测点位的PM_(10)和PM_(2.5)浓度对于宝鸡市大气颗粒物的污染贡献率相对其他点位较高,主要是其地理位置导致的。  相似文献   

8.
文章基于2015~2017年3年来甘肃省国控监测站的PM_(2.5)数据,采用GIS的空间分析方法,揭示甘肃省城市PM_(2.5)的时空分布特征。结果显示:近年来甘肃省城市空气中PM_(2.5)的整体呈下降趋势,且呈现明显的季节变化特征;根据季节变化特征分析,扬尘在甘肃西部地区的PM_(2.5)数值中的贡献率较大;甘肃省冬季城市的PM_(2.5)严重超标; PM_(2.5)高浓度集聚地带主要位于兰州市附近,以兰州市为中心,表现出以兰白都市经济圈向四周减弱的趋势。  相似文献   

9.
选取梅州市典型污染日(2015年7月8日至29日)进行实际测量,在梅州市环境监控中心站楼顶每天连续采集PM_(10)和PM_(2.5)样品,利用离子色谱仪分析样品中Na+、NH4+、K+、Mg~(2+)、Ca~(2+)、Cl~-、NO_2~-、NO_3~-、SO_4~(2-)离子的质量浓度,结果表明,PM_(10)日均质量浓度为(54±19)μg/m~3,PM_(2.5)日均质量浓度为(35±14)μg/m~3。PM10和PM2.5中水溶性无机离子平均浓度分别为(19.7±4.4)μg/m~3、(10.8±5.0)μg/m3,分别占PM_(10)和PM_(2.5)质量的(42±20)%和(31±9.7)%。其中S0_4~(2-)、NO_3~-、NH_4~+是梅州市PM_(10)和PM_(2.5)中最主要的水溶性无机离子。采样期间SO42-浓度较高的可能原因是煤炭在梅州市的能源结构中占有较高比例。S0_4~(2-)、NO_3~-主要以(NH_4)_2SO_4的形式存在气溶胶体系中。  相似文献   

10.
邯郸市大气PM_(2.5)成分空间分布研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘卫  马笑  王丽涛  马思萌  魏哲  张城瑜 《环境工程》2017,35(10):105-109
为研究邯郸市2015年PM_(2.5)的污染状况,采用河北工程大学监测站全年PM_(2.5)浓度和气象在线监测数据以及4个代表月4个站点离线采样成分数据,分析了PM_(2.5)的浓度水平与气象要素的关系以及其化学组分特征。结果表明:PM_(2.5)的年均浓度为91.14μg/m~3,最高达到706.56μg/m~3;不同相对湿度条件下,PM_(2.5)浓度对邯郸地区能见度有较大影响。此外,邯郸静风频率较大,全年东南风风速较小,PM_(2.5)污染相对更加严重;PM_(2.5)中主要化学成分为SO_4~(2-)、NO_3~-和NH_4~+、OC和EC,4个站点采样无显著差异性。  相似文献   

11.
通过银川市2015年空气污染物质量浓度值分析,结果表明,PM_(10)和PM_(2.5)的浓度变化具有明显的季节特征和区域特征。PM_(10)质量浓度春季高于夏季,秋季最低,且PM_(2.5)质量浓度夏季略低于秋季,春季最低;PM_(10)和PM_(2.5)月均质量浓度变化均为1月份最大,9月份最小;PM_(10)和PM_(2.5)分指数等级冬季最差,PM_(10)分指数等级秋季好于夏季,PM_(2.5)分指数等级春季好于秋季;4#监测点各个季节PM_(10)浓度均表现为最高,5#监测点PM_(2.5)浓度有3个季节均为最高。  相似文献   

12.
通过对不同园林绿地类型内空气PM_(2.5)的检测,结果发现:PM_(2.5)浓度日变化规律均呈现早晚高午间低的双峰单谷型趋势。各绿地类型内空气PM_(2.5)浓度10月最低,8月最高。全年空气PM_(2.5)浓度均值从大至小依次为夏季>冬季>春季>秋季。不同天气状况下空气PM_(2.5)浓度的大小排序依次为阴天>晴天>雨天>雨后天晴。复混的植被结构对空气颗粒物的滞尘能力大于单一的植被结构,按滞尘能力大小排序依次为阔叶乔灌草、针叶乔灌草、阔叶乔草、灌木草坪、草坪。  相似文献   

13.
基于重庆市监测数据,运用协整与误差修正模型研究了输入变量平均温度、相对湿度、PM_(10)浓度、一氧化碳(CO)浓度、二氧化氮(NO2)浓度以及二氧化硫(SO_2)浓度对输出变量PM_(2.5)浓度的影响机理。结果表明:1)PM_(2.5)与空气中相对湿度、PM_(10)浓度和CO浓度呈正相关关系;2)当系统短期偏离长期均衡时,系统将以0.213的调节力度将非均衡状态拉回到均衡状态;3)建立的模型预测误差极小,并具有较强的泛化能力。  相似文献   

14.
基于泉州市区2014年1、4、7、10月的空气质量自动监测数据,分析了PM_(10)与PM_(2.5)污染水平并对其季节变化趋势进行探讨。结果表明,监测期间内,泉州市区PM10日均浓度变化范围为0.025~0.376mg/m3,PM2.5日均浓度变化范围为0.010~0.346mg/m3,PM_(10)与PM_(2.5)的年均日浓度分别为0.067mg/m3和0.034mg/m3。泉州市区大气中的PM_(10)与PM_(2.5)浓度均呈现出明显的季节变化趋势,春冬两季浓度高于夏秋两季。利用HYSPLIT-4模型对PM_(10)与PM_(2.5)浓度出现异常高值的时段进行气团后推轨迹推导,结果显示长距离传输和区域传输在不同时段对本地污染的主导作用不同。  相似文献   

15.
南洋  张倩倩  张碧辉 《环境科学》2020,41(2):499-509
为探究中国典型区域地表PM_(2.5)浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM_(2.5)浓度网格化数据进行分析.典型区域多年平均PM_(2.5)浓度从高到低:华东华中地区(40. 5μg·m~(-3))华北地区(37. 4μg·m~(-3))华南地区(27. 8μg·m~(-3))东北地区(23. 7μg·m~(-3))四川盆地(22. 4μg·m~(-3)).东北地区PM_(2.5)年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM_(2.5)浓度空间分布上,PM_(2.5)浓度分布呈现显著的空间差异,多年来各区域PM_(2.5)浓度高值分布相对稳定. PM_(2.5)浓度变化的单因素GAM模型中,所有影响因素均通过显著性检验,典型区域中对PM_(2.5)浓度变化影响解释率较高的各个影响因素顺序有所不同. PM_(2.5)浓度变化的多因素GAM模型中,均呈现非线性关系,典型区域方差解释率为87. 5%~92%(平均89. 0%),模型拟合度较高,对其变化有显著性影响.典型区域YEAR和LON-LAT均对PM_(2.5)浓度变化影响最为显著.除此之外,气象因子对PM_(2.5)的影响大小在各个区域存在不同.东北地区影响PM_(2.5)最重要的3个气象因子排序为:tp v_(10) ssr;华北地区为:temp tp msl;华东华中地区为:temp tp ssr;华南地区为:temp RH blh;四川盆地为:tp temp u_(10).结果表明,运用GAM模型,能够定量分析区域PM_(2.5)浓度长期变化的影响因素,对PM_(2.5)污染评估具有重要意义.  相似文献   

16.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

17.
为分析京津冀及周边地区的PM_(2.5)时空变化特征,先利用MODIS数据反演1 km分辨率的AOT产品,采用地理加权回归模型实现京津冀及周边地区2016~2017年逐日PM_(2.5)浓度的遥感反演,并在此基础上对多种时间尺度PM_(2.5)浓度合成结果进行验证分析,最后从不同时间尺度对2016年和2017年PM_(2.5)时空变化特征进行了对比分析.结果表明本研究反演的日均、月均和年均这3种时间尺度的PM_(2.5)浓度结果总体上效果较为理想,时间尺度越大,遥感估算的PM_(2.5)效果越好,年均PM_(2.5)结果相对精度达80%以上,并且2016年和2017年同一时间尺度的PM_(2.5)遥感结果精度较为接近.京津冀及周边地区PM_(2.5)分布总体均呈现"冬季秋季≈春季夏季"和"南高北低"的季节变化和空间分布趋势.与2016年相比,2017年京津冀及周边地区PM_(2.5)浓度平均下降约9.2%,且高值区范围明显减小,PM_(2.5)浓度高值一般发生在11月和12月,而低值则一般发生在8月.2017年与2016年PM_(2.5)浓度时空变化与2017年的大气污染综合治理攻坚行动巡查和空气质量专项督查活动密切相关,这也能间接说明大气污染减排的成效.  相似文献   

18.
运用Models-3/CMAQ模式系统,模拟分析了2014年11月3~11日APEC会议期间北京市PM_(2.5)污染的时空分布特征,并利用过程分析工具IPR研究了会期两次短时间污染过程(4日13:00~5日12:00和10日13:00~11日12:00)中各种大气物理化学过程对城区官园和郊区定陵两个代表性站点近地面PM_(2.5)生成的贡献.结果表明,CMAQ模型合理地再现了北京市PM_(2.5)的浓度水平和时间变化.北京地区4日和10日发生不利于污染物扩散的气象条件,导致PM_(2.5)小时浓度出现高值(分别为188,124μg/m~3),但受减排措施和冷高压的作用,PM_(2.5)高值维持时间较短.4日13:00~5日12:00,水平传输是官园和定陵站点PM_(2.5)的主要贡献者,贡献率分别为49.6%和90.9%.此次污染过程北京地区受南部污染传输影响较强.10日13:00~11日12:00,官园站点PM_(2.5)主要来自源排放在本地的积累(78.8%),定陵站点PM_(2.5)主要来自较弱的水平传输(93.9%).此次过程体现出更加明显的局地性污染特征.两次过程中,PM_(2.5)的主要去除途径均为垂直传输.  相似文献   

19.
邯郸市PM_(1.0)、PM_(2.5)污染特征及在线水溶性离子分析   总被引:1,自引:1,他引:0  
对2014年12月—2015年2月邯郸市大气中PM_(1.0)、PM_(2.5)以及PM_(2.5)中的硝酸根(NO-3)、水溶性有机碳(WSOC)和硫酸根(SO2-4)进行在线监测。结果表明,PM_(1.0)中干性成分(PM_(1.0)_DRY)和包含水分的PM_(1.0)(PM_(1.0)_WET)分别占PM_(2.5)的74.0%和81.4%,PM_(1.0)为PM_(2.5)中的主要组成。利用锯齿型方法估算本地源和区域源对PM_(1.0)、PM_(1.0)~2.5、PM_(2.5)的贡献,得出区域源对PM_(1.0)的贡献为40.6%,明显高于对PM_(1.0)~2.5与PM_(2.5)贡献的32.3%和37.7%,因为PM_(1.0)直径小,在大气中存在时间较长、传输距离远。根据NO-3、WSOC、SO2-4与PM_(1.0)、PM_(1.0)~2.5的相关系数,推断NO-3、WSOC可能在PM_(1.0)生成,而SO2-4可能在PM_(1.0)~2.5中生成。  相似文献   

20.
中国大陆城市PM_(2.5)污染时空分布规律   总被引:2,自引:0,他引:2  
为分析中国大陆城市PM_(2.5)污染的时空分布规律,运用统计学方法和GIS技术对2014年开展PM_(2.5)常规监测的161个城市进行分析,结果发现:仅8.1%的城市年评价结果达标,日均质量浓度超标天数占26.6%.夏季及春末、秋初PM_(2.5)污染相对较轻,冬季污染较重.PM_(2.5)的日变化曲线呈现不太明显的双峰分布,最低值出现在16:00前后,最高值出现在10:00前后,而凌晨至清晨保持相对较高的污染水平.京津冀及周边地区,中部地区的湖北、湖南、安徽PM_(2.5)污染较重,东南沿海和云南、西藏污染相对较轻.PM_(2.5)的空间分布与风速、相对湿度、土地利用等因素的空间分布具有较强的相关性.PM_(2.5)与PM10质量浓度比值的平均值为0.591,空间上呈由西北向东南逐渐升高、南方高于北方的格局,时间上除1、2月份较高、5月份较低外,其余月份基本稳定在0.55~0.6.研究结果有利于从宏观上认识中国城市PM_(2.5)污染的时空格局,从而针对性地开展环境污染防控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号