首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Investigations were carried out to determine the effect of zeolite type A on metal removal by activated sludge using laboratory activated sludge simulations. They were operated at constant aerator sludge age and settler surface loading. Different concentrations of raw zeolite and zeolite extracted from washing powder (0, 15, 30, 60, 120 mgl?1) were introduced into the simulations. The zeolite was added at two degrees of calcium exchanged for sodium, 25 and 75% of the maximum exchange capacity. Metals were added at concentrations typical of mixed domestic-industrial waste waters. The results show that there was no adverse effect on metal removal by the laboratory activated sludge simulations in the presence of zeolite type A.  相似文献   

2.
The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals applied to soil in compost on soil microbial processes and only positive effects of compost application on the microbial status and fertility of soil are reported. The negative impacts on soil microorganisms apparent in one long-term field experiment could be explained by the exceptionally high concentrations of Cd and other elements in the applied compost, and of Cd in the compost-amended soil, which are unrepresentative of current practice and compost quality. The metal contents of source-segregated MSW or greenwaste compost are smaller compared to mechanically-sorted MSW-compost and sewage sludge, and low metal materials also have the smallest potential metal availabilities. Composting processes also inherently reduce metal availability compared to other organic waste stabilisation methods. Therefore, risks to the environment, human health, crop quality and yield, and soil fertility, from heavy metals in source-segregated MSW or greenwaste-compost are minimal. Furthermore, composts produced from mechanically-segregated MSW generally contain fewer metals than sewage sludge used as an agricultural soil improver under controlled conditions. Consequently, the metal content of mechanically-segregated MSW-compost does not represent a barrier to end-use of the product. The application of appropriate preprocessing and refinement technologies is recommended to minimise the contamination of mechanically-segregated MSW-compost as far as practicable. In conclusion, the scientific evidence indicates that conservative, but pragmatic limits on heavy metals in compost may be set to encourage recycling of composted residuals and contaminant reduction measures, which at the same time, also protect the soil and environment from potentially negative impacts caused by long-term accumulation of heavy metals in soil.  相似文献   

3.
南京地区农田土壤和蔬菜重金属污染状况研究   总被引:32,自引:2,他引:30  
采集了南京市5县4郊5个环境单元(矿冶区、交通干线、工厂周边、污灌地、农产品基地)共100个样点的农田土壤及部分蔬菜样品,测定了重金属(Pb、Cu、Zn、Cd)的质量分数。结果表明,土壤Pb、Cu、Zn、Cd 质量分数的变化范围分别为26.1~4 138.8、16.5 ~3 375.1、46.0~3 587.6、0.09~17.61 mg/kg。不同功能区土壤重金属含量存在明显差异,以矿区周边农田污染最为严重,其次为污灌地和公路沿线农田, 部分农产品基地存在轻度Cd污染,工厂周边农田土壤污染相对较小。19个样点的青菜地上部重金属Pb、Cu、Zn、Cd质量分数的变化范围分别为0.11~7.11、5.04~76.42、36.8~364.3、0.04~2.96 mg/kg,同样以矿区周边污染农田的青菜样本重金属含量最高。青菜重金属含量与土壤重金属生物有效性含量和总量之间呈极显著相关。不合理的矿业开采和冶炼是导致南京地区农田土壤和蔬菜重金属污染的重要原因。  相似文献   

4.
长江口潮滩沉积物中活性重金属的空间分异及控制机制   总被引:1,自引:0,他引:1  
利用盐酸羟氨-25%醋酸溶液,提取了长江口潮滩沉积物中活性重金属含量。研究发现,长江口潮滩沉积物中活性重金属占总量的百分含量依次为Cu 26%,Pb 36%,Fe 7%,Mn 49%,Zn 32%,Cr 14%和Al 16%,沉积物基本未受到Cr污染,其余重金属污染程度处于中等偏下水平。除Zn、Cr外,其余活性重金属在夏季沉积物中的含量明显低于春季,其主要原因是夏季风暴潮将大量细颗粒泥沙及其富集的重金属带离潮滩进入了河口水体中。受点源污染排放及沉积物粒度影响,活性重金属在长江口南岸的浒浦、顾路和浦东机场出现峰值含量,且高潮滩含量明显高于中、低潮滩。在垂向上,重金属一般在沉积物表层或亚表层形成富集。在口门附近的滨岸潮滩沉积物中,Cu、Pb的空间分异主要受早期成岩作用的控制,在污染较为严重、水动力作用相对较弱的潮滩沉积物中,Cu、Pb的空间分异主要受沉积物中有机质含量变化的控制.  相似文献   

5.
《土壤污染防治法》的正式出台,标志着我国土壤污染防治工作由"现状治理"转向"风险预防",为此开展区域土壤重金属风险预警研究具有一定的理论与现实意义。以太湖沿岸某产粮县为研究对象,以2015年为基准年,运用重金属输入-输出通量模型和土壤环境负载容量法对研究区耕地土壤中的As、Hg、Cr、Cd、Pb 5种重金属15年(2030年)与35年(2050年)后的风险概率进行预警研究。研究结果表明:大气干湿沉降成为除As以外其他4种土壤重金属的主要来源,畜禽粪便、化肥投入与灌溉水也会在一定程度上影响土壤重金属输入;此外,研究区耕层土壤中As、Cr、Pb 3种重金属整体情况较为良好,Hg、Cd污染风险概率较高,主要分布在研究区中部的O镇、P镇。通过GIS技术与区域物质流通量模型的结合能够很好地对不同区域以及不同重金属污染类型的区域进行风险预警,这可以为土壤污染差别化管控策略的制定提供重要思路。  相似文献   

6.
A potential hazard to Beijing was revealed due to the accumulation trend of heavy metals in agricultural soils with sewage irrigation, which results in metal contamination and human exposure risk. Samples including soils and plants were collected to assess the impacts of sewage irrigation on the irrigated farming area of Beijing. Concentrations of the five elements Cd, Cr, Cu, Zn, and Pb were determined in samples to calculate the accumulation factor and to establish a basis for environmental protection and the suitability of sewage irrigation for particular land use in the urban-rural interaction area of Beijing. Using reference values provided by the Beijing Background Research Cooperative Group in the 1970s, the pollution load index (PLI), enrichment factor (EF), and contamination factor (CF) of these metals were calculated. The pollution load indices (sewage irrigation land 3.49) of soils indicated that metal contamination occurred in these sites. The metal enrichment (EF of Cd 1.8, Cr 1.7, Cu 2.3, Zn 2.0, Pb 1.9) and the metal contamination (CF of Cd 2.6, Cr 1.5, Cu 2.0, Zn 1.7, Pb 1.6) showed that the accumulation trend of the five toxic metals increased during the sewage irrigation as compared with the lower reference values than other region in China and world average, and that pollution with Cd, Cu, Zn, and Pb was exacerbated in soils. The distributions of these metals were homogeneous in the irrigation area, but small-scale heterogeneous spatial distribution was observed. Irrigation sources were found to affect heavy metal distributions in soils. It was suggested that heavy metal transfer from soils to plants was a key pathway to human health exposure to metal contamination. However, with the expansion of urban areas in Beijing, soil inhalation and ingestion may become important pathways of human exposure to metal contamination.  相似文献   

7.
Heavy metals present in soils constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. The distribution of heavy metals in a sandy Ultisol (Arenic Kandiustult) in south eastern Nigeria subjected to 40 years disposal of sewage wastes (sludge and effluents) was studied using two profile pits (S/NSK/1 and S/NSK/2) sited in the sewage disposal area and one profile pit (NS/NSK) sited in the non-sewage disposal area. Soil samples were collected in duplicate from these soil horizons and analyzed for their heavy metal contents. The mean concentrations of Zn, Cu, Cd and Pb in the top- and sub-soil horizons of sewage soil were 79.3, 32, 0.29 and 1.15 mg/kg, respectively. These levels were high enough to constitute health and phytotoxic risks. All the metal levels were much higher in the AB horizon in the sewage than in the non-sewage soil profile, but Pb and Cu contents were also high down to the Bt1 horizon, indicating their apparent relatively high mobility in this soil. There was a significant correlation between organic matter (OM) and Zn (r=0.818**), and between OM and Cd (0.864**) in the sewage soil. The high OM status of the sewage sludge, together with its corresponding low pH, might have favoured metal-OM complexation that could reduce heavy metal mobility and phytotoxicity in this soil.  相似文献   

8.
从2008年至2010年连续两年,对三峡库区涪陵至巴东段水体溶解态重金属含量进行监测,分析三峡水库自2008年首次以172 m高水位试验性蓄水以来水体溶解态重金属含量变化特征及其影响因素。结果表明:水体溶解态重金属含量在丰水期低水位时含量较高,而在平水期和枯水期高水位蓄水时,水体重金属含量较低,丰水期时水体溶解态重金属含量虽然相对较高,但仍然达到《地表水环境质量标准》(GB 3838 2002)Ⅰ类水域标准。重金属在水体与沉积物和消落带土壤中含量并无明显相关性,沉积物和消落带土壤重金属对水体溶解态重金属含量分布影响较小。库区水环境因素在丰水期和平水期、枯水期呈现出明显差异特征,特别是汛后水体悬浮物SS含量远低于丰水期。三峡水库水环境因素的变化对重金属的分配有着重要作用,丰水期过后三峡库区水体pH值和DO升高,水温和Eh降低,SS含量显著下降,水环境因素、气象条件、水位调度等因素的变化致使水体溶解态重金属含量降低  相似文献   

9.
A comparative study of the greater plantain seed progeny was performed with samples from cenopopulations growing for a long time under conditions of radioactive contamination (in the Eastern Ural Radioactive Trace, EURT) or chemical pollution (in the impact zone of the Nizhny Tagil Iron and Steel Works, NTMK). The progeny of plants from the NTMK zone had low viability but proved to be resistant to the additional impact of a “new” factor (acute γ-irradiation) as well as of the “habitual” factor (heavy metal toxicity). Plantain seeds from the EURT area showed high viability and low heavy metal and radiation resistance; i.e., no preadaptation effect was revealed. In experiments on growing plants from different cenopopulations in plot culture, samples from the EURT zone were characterized mainly by morphoses of generative organs, while samples from the NTMK area, by morphoses of vegetative organs.  相似文献   

10.
Biosorption efficiency of coir pith, a waste product from coir industry, was investigated in this study for the removal of metallic pollutants such as Ni, Cu and Zn from aqueous solutions. The disposal of coir pith is a major problem associated with the coir industries, especially working in the small-scale sector. The present study explores the effectiveness of utilization of coir pith, an accumulating waste, as a biosorbent for heavy metal removal. Batch mode studies were done to evaluate the efficiency of removal of metals under varying adsorption conditions of pH, metal concentration and contact time. Characterization studies of the biosorbent and SEM analysis were done. Kinetic modelling studies were tried using Lagergren pseudo-first-order and second-order models. Equilibrium studies were done using well-known Freundlich, Langmuir and D–R isotherm models. It was found that all isotherms are fitting well indicating the efficiency of coir pith as an adsorbent of heavy metals. The applicability of all the three isotherms to the sorption processes shows that both monolayer adsorption and heterogeneous energetic distribution of active sites on the surface of the adsorbent are possible. Due to the abundance and low cost of these materials, adsorption technologies developed can act as good sustainable options for the future in heavy metal removal from industrial effluents.  相似文献   

11.
长三角典型城郊农田土壤-浙贝母重金属迁移特征研究   总被引:1,自引:0,他引:1  
城郊生态系统中土壤重金属分布及其在土壤—植物系统的迁移和富集特征是城乡共生体土壤安全研究的热点问题。以典型经济作物浙贝母(Fritillaria thunbergii)为例,基于野外采样和实验分析,对长三角代表性城郊农田中土壤—植物系统重金属的分布、富集和迁移特征开展研究。结果表明:受人类活动的影响,城郊农田土壤中重金属除Cr外,Cu、Zn、As、Cd和Pb的平均含量超过土壤背景值,并且不同重金属在空间分布上表现较高的空间异质性。除Cd和Cr外,浙贝母植株不同部位重金属含量表现为叶、茎显著高于鳞茎,叶中重金属含量可达到鳞茎的5~10倍,表明叶比鳞茎更易富集重金属。重金属迁移系数分析表明,Cr、Cu、Zn、As、Cd和Pb主要富集在浙贝母植株的地上部分,且不同重金属在植株中的迁移和富集能力具有较大的差异。浙贝母地上部分对Cr、As和Pb的富集能力较低,对Cu、Zn和Cd的富集能力相对较强。相比而言,鳞茎对不同重金属的富集能力均较弱,综合污染评价也表明,浙贝母鳞茎中重金属含量并未超过污染标准。  相似文献   

12.
The aim of this work has been to assess the accumulation of copper, zinc, cadmium and lead by a test alga, Scenedesmus obliquus, under nongrowth conditions. The results provide an evidence that metals can be readily accumulated by algae and that accumulation is a function of the metal-to-algae exposure ratio. When the metals were added in combination in equimolar concentrations, the following order of affinity to algal surface was detected Zn > Cu ? Cd > Pb. However, when EDTA was added to the test water, metal accumulation was greatly retarded. Moreover, when algae loaded with one of the metals were washed with EDTA solution the major part of the accumulated metal was mobilized, indicating that EDTA had stronger metal binding affinity than any ligands liable to exist on algal surface. Metal accumulation by algal cells isolated from a culture in the logarithmic growth phase was of much higher magnitude than that displayed by cells isolated from a culture in the decline phase.  相似文献   

13.
横沙岛潮滩沉积物中重金属的空间分布与累积   总被引:2,自引:0,他引:2  
长期以来,长江流域的工农业及城市生活排污一直没有得到有效的控制,这必将对下游河口地区的生态环境造成直接或潜在的威胁。因此,针对横沙岛目前的潮滩环境进行研究,并就潮滩质量和发展趋势进行评价非常必要。通过对横沙岛潮滩表层沉积物中重金属元素空间分布与累积的统计学分析,得知横沙岛潮滩环境总体比较清洁,但多年来受城市工业废水和生活污水排放,以及城市汽车尾气和工业粉尘干湿沉降的影响,局部地区表现出较严峻的污染形势,Cu、Zn、Cr、Pb的最高浓度分别达到背景值的2.34、4.24、2.74和1.63倍。通过对潮滩表层沉积物粒度和有机质含量的分析,指出水动力条件、潮滩生物活化作用是影响重金属空间分布和累积的主要因素。  相似文献   

14.
Standard samples, that is matrices containing precisely known concentrations of various radionuclides, are necessary adjuncts to any analytical quality control program. In general, we prefer the use of “natural matrix standards,” samples into which the radionuclides have become incorporated under natural conditions, and over as long a time span as possible. Under some circumstances, however, real advantages are offered by “spiked sample standards” samples to which the isotope of interest has been added in a precisely known amount, at the time of preparing the standard. It is our purpose to discuss the advantages and disadvantages of spiked standards and to contrast them with those of natural matrix standards, as well as to discuss the preparation of the former class of standards and the evidence supporting our recommendation of caution in their use.In general, spiked standards offer advantages of low cost of preparation, of advance assurance that the amount and chemical form of the radioisotopes added are known, and of the possibility of preparation of unnatural matrices, or of nuclides that are to be expected but not yet to be found in nature. The most salient disadvantages of spiked standards derive from the usual uncertainty concerning the concentration of any radionuclides in the matrix before spiking and from the difficulty of insuring that there will be no difference in analytical behavior between the spike and the same isotope that has become incorporated in the matrix under natural conditions. Consideration of these advantages and disadvantages leads to identification of a list of special problems for which spiked standards may be advantageous and of a list of precautions indicated in the interpretation of the resulting data. The argument against the general applicability of spiked standards appear overwhelming.  相似文献   

15.
分别选取了贵州省7个主要城市的10个典型污水处理厂脱水污泥样品进行检测,统计了2009~2012年污泥中重金属Cu、Zn、Pb、Cd、Ni、Cr、As、Hg的含量。结果表明,城市污泥中重金属含量受到各地区工矿业发展的影响,部分重金属在某一污水处理厂出现了远大于其它地区的极值,具有明显的地域特征。2009~2012年贵州省城市污泥重金属的变化表现为As、Hg呈升高趋势,其它重金属变化趋势不明显,As、Hg升高可能是因为贵州省近年来燃煤消耗量增加,烟气排放污染所致。对污泥重金属的农用风险评价显示,贵阳中部(S2)、黔西地区(S9)污泥农用重金属的生态风险较高,不推荐直接施用,其它各地区污泥农用风险较低,可以进行农用,建议各污水处理厂应根据本地区污泥重金属特征制定合理的污泥处置措施  相似文献   

16.
污水处理厂的排放污泥是诸多污染物的最终环境归宿之一,其环境影响值得重视。在江苏省全境调查了49家化工园区集中式污水处理厂,对其外排污泥及其浸出液中的5种重金属(砷、镉、铬、汞和铅)含量进行了测定,采用Hakanson潜在生态危害指数法评价了污泥中重金属生态风险。结果表明:49家化工园区污泥浸出液中5种重金属均不超标,但污泥中的砷、铬、汞含量超标,超标率分别为24.5%、6.1%和4.1%,最大超标倍数分别为131、2.12和0.41。污泥中砷含量显著高于我国城市污泥,潜在生态风险程度呈现汞砷铬。从地域分布来看,苏北地区化工园区污泥重金属风险更大。  相似文献   

17.
Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO2 enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico–chemico–biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO2, temperature and drought influence the plant–metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant–microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant–metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security.  相似文献   

18.
Recognizing that waste-derived chlorine can enhance heavy metal emissions by forming volatile metallic chlorides during municipal solid waste (MSW) combustion, and that in Taiwan, FeCl3-containing sewage sludge may either be landfilled or coincinerated with other MSW, this study thus investigated the effects of FeCl3 on the speciation and partitioning of heavy metals in a multimetal incineration system by using a tubular furnace and FeCl3-spiked simulated wastes. The molar ratio of chlorine content to heavy metal content (referred to as the Cl/ M ratio), ranging from 3 to 200, was used as a parameter to evaluate the effects of chlorine on the movement of heavy metals between the incinerator discharges. Results indicate that speciation and partitioning were related to the affinity between the chlorine and the heavy metals and between chlorine and hydrogen in the combustion system. The effectiveness of increasing the Cl/M ratio to the formation potential of metallic chlorides and on the shift of heavy metals from the bottom ash to the fly ash and/or the flue gases was found to have in increasing order as follows: Zn>Cu>Cr, a phenomenon basically reflecting the volatility of the heavy metals and their chlorides formed during combustion.  相似文献   

19.
A detailed comprehensive study on the effects of heavy metals on the biological activity and other characteristics of common chernozem of the southern European facies was performed. This involved the analysis of various microbiological and biochemical indices characterizing soil biological activity, their dynamics, a set of several metals and their different chemical forms, and a wide range of metal concentrations in the soil. New important aspects of the effects of heavy metals on biological processes in the soil were revealed. An integral method was proposed for assessing changes in the total biological activity of the soil on the basis of informative indices used in the monitoring, diagnosis, and indication of soils polluted with heavy metals. Geographic trends in changes of soil resistance to heavy metal pollution were analyzed within the common chernozem subtype and by comparing chernozem with other soils.  相似文献   

20.
Kolleru lake is the largest fresh water lake in the districts of East and West Godavari of Andhra Pradesh, India. Many anthropogenic sources contribute to the heavy metal pollution in the lake and the bioaccumulation of heavy metals in fish helps in assessing the aquatic pollution. Total contents and fractionation of selected heavy metals, viz., Zn, Cu, Cd, Pb, Cr, Ni and Co were measured in sediment sample and three edible fish. The investigation aimed at revealing differences in the accumulation pattern of heavy metals in fish inhabiting sediments characterized by varying metal bioavailability. The metal concentrations were found to be greater than the background concentrations of sediments indicating the anthropogenic origin of metals. Good recovery values were obtained for metal contents in sediments and fish. Large fractions of Zn, Cd and Cu were associated with mobile fraction of sediment and showed greater bioaccumulation in fish whereas Ni and Co were least mobilisable. The results clearly indicate that the fish of Kolleru lake are contaminated with metals and not advisable for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号