首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Evaluation of landfill leachate in arid climate-a case study   总被引:5,自引:0,他引:5  
Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.  相似文献   

2.
The study aimed at determining the socio-economic issues due to municipal solid waste dumping, the extent of groundwater contamination and the groundwater dependency around Perungudi dumpsite in Tamil Nadu, India. Sampling and analysis of groundwater and leachate show the contamination migration is due to dumpsite leachate. The concentrations of contaminants were more severe within 1.5?km along groundwater flow direction mainly due to the geological profile. The Piper diagram also shows that the groundwater sampled within 3?km in the flow direction was classified as Na–Cl type. Studies conducted within contaminated areas to determine the groundwater usage showed that higher percentage of lower and middle socio-economic status categories was using the groundwater for domestic purposes, which may lead to health issues. The present study suggests that proper solid waste management and groundwater remediation techniques along with the people’s involvement are necessary to reduce the consequences of groundwater contamination on the people residing around the dumpsite.  相似文献   

3.
This work evaluated the sludge potential of the Wastewater Treatment Plant (ETA) in the city of Brasília to be used as a fuel by gasification. It is known that ETA sludge is a significant environmental liability, since current legislation restricts its final disposal. For this, the chemical characterisation of ETA sludge was performed by immediate and elemental analysis. No traces of heavy metals were observed, and the moisture (ω) and ash contents were 31.17 and 51.77%, respectively, different from those already reported in the literature because the composition depends on the water treatment technology employed. The gasification process was numerically simulated; once dry, it constitutes a residue with an energy content (HHV) of 22.4498 MJ kg?1, comparable with other types of biomass currently used for large-scale energy generation by thermochemical processes (e.g. agricultural residues, wood and sugar cane bagasse). For the numerical simulation with an equivalence ratio (Φ) near 3, higher concentrations of CO and H2 can only be achieved with ω lower than 15%. The results showed that gasification can be an attractive option for the disposal and use of a renewable waste resource, such as ETA sludge, in an environmentally safe way, and it is allowed by local legislation.  相似文献   

4.
The use of organic waste and compost as a source of organic matter and nutrients is a common practice to improve soil physico-chemical properties, meanwhile reducing the need for inorganic fertilisers. Official guidelines to assess sewage sludge and compost quality are mostly based on total metal content of these residues. Measurement of the total concentration of metals may be useful as a general index of contamination, but provides inadequate or little information about their bioavailability, mobility or toxicity when the organic residue is applied to the soil. However, ecotoxicity tests provide an integrated measure of bioavailability and detrimental effects of contaminants in the ecosystem. In the present study, three different types of biodegradable organic residues (BORs) have been considered: sewage sludge from municipal wastewater treatment (SS), compost from the organic fraction of unsorted municipal solid waste (MSWC), and garden waste compost (GWC). The BORs were subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn), in order to verify their suitability for land application. Water leachability was determined through the DIN 38414-S4 method, while the modified BCR sequential extraction procedure was used for metal speciation. Ecotoxicity of the BORs was studied by direct and indirect bioassays. Direct toxicity bioassays were: plant growth tests with cress (Lepidium sativum L.) and barley (Hordeum vulgare L.), and earthworm (Eisenia fetida) mortality. On the other hand, indirect exposure bioassays, with leachate from the residues, took into account: luminescent bacteria (Vibrio fischeri), seed germination (L. sativum and H. vulgare) and Daphnia magna immobilization. As far as total metal concentration is concerned, with particular reference to Zn, SS resulted neither suitable for the use in agriculture nor compatible to be disposed of as an inert material into landfill, according to the Directive 1999/31/EC. Zinc in SS was mainly present in exchangeable form (28.5%), appearing as highly bioavailable. As a consequence, SS exhibited either high ecotoxicity effects with the indirect exposure bioassays or significant mortality with the earthworm bioassay. Total content of metals in MSWC allowed its classification as "stabilised biowaste", according to 2nd draft [DG Env.A.2. Working document of Biological treatment of biowaste - 2nd draft. Directorate-General Environment, Brussels, 12th February; 2001. accessed in:http://europa.eu.int/comm/environment/waste/facts_en.htm, at 10/09/2002] while leachate, on the basis of the concentration of these contaminants, could be classified as "inert waste". This residue showed significant ecotoxicity effects with direct exposure bioassays as well as with the luminescent bacteria bioassay. However, it resulted less toxic than SS. Finally, GWC could be classified as a Class 2 compost, with no detectable toxic effects on the organisms used in the bioassays, except for the luminescent bacteria. In this case, an EC(50) of 73.0% was observed. Considering the results, the use of a battery of toxicity test in conjunction with chemical analysis should be suggested, in order to correctly assess possible environmental risks deriving from disposal or land application of biodegradable organic residues.  相似文献   

5.
Coal combustion byproducts are to be placed in an underground coal mine to control subsidence. The materials were characterized to determine potential groundwater impacts. No problems were found with respect to heavy or toxic metals. Coal combustion byproduct leachates are high in dissolved solids and sulfates. Chloride and boron from fly ash may also leach in initially high concentrations. Because the demonstration site is located beneath deep tight brine-bearing aquifers, no problems are anticipated at the demonstration site.  相似文献   

6.
Identification of metal toxicity in sewage sludge leachate   总被引:1,自引:0,他引:1  
Sewage sludge is a source of organic matter and nutrients with the potential for being used as a fertilizer. However, metals in sewage sludge might accumulate in soil after repeated sludge applications, and metal concentrations might reach concentrations that are toxic to microorganisms, soil organisms and/or plants. This toxicity might change with time due to kinetic factors or abiotic factors such as freezing, drying or rainfall. The objective of this study was to determine toxicity of sewage sludge leachate from a lysimeter with 50 cm of sludge applied. Attempts were also made to identify the cause of toxicity of the sludge leachate by toxicity identification and evaluation (TIE) techniques. Sludge leachate was collected monthly during 1 experimental year (August 2001 to August 2002). Metal concentrations were analysed, and the toxicity was determined with Daphnia magna (48-h immobility). The effect of EDTA or sodium thiosulphate addition, filtration through a CM-resin or a Millex-resin on toxicity was also tested. The results showed that toxicity of the sludge leachate apparently varied during the year, and that filtration through the CM-resin reduced most of the toxicity followed by the addition of EDTA. None of the other treatments reduced the toxicity of the sludge leachate. This indicated that one or more metals were responsible for the observed toxicity. Further calculations of toxic units (TU) suggested that Zn contributed most to the toxicity. Results also indicated that Ca concentrations in the sludge leachate reduced the toxicity of Zn.  相似文献   

7.
A specific leachate that contained 1.036 mg l(-1) of 2-chlorobiphenyl was used in the study (255 mg l(-1) COD and 133 mg l(-1) BOD5). Bench scale (20 l) air stripping trials were used to simulate on a small-scale the treatment potential of this method. Air stripping effectively reduced the leachates COD concentration. Regardless of the volume of air supplied (1-5 l of air per minute) the leachates COD reached a <50 mg l(-1) equilibrium after 96-h exposure, however, increasing the volume of air accelerated the process. In untreated leachate, the LC50 for Asellus aquaticus was 57% v/v leachate in deionised water and 5% for Gammarus pulex (96-h, static LC50 tests without nutrition and oxygen depleting conditions). After being exposed to air stripping, these values rose from 90% to below the LC50 threshold for Asellus when 1-5 l of air per minute were applied and 30-90% for Gammarus. Furthermore, in sub-lethal concentrations of air stripped leachate (leachate that had been exposed to 5-l of air per minute for 96-h) the population dynamics of both test species remained unaltered.  相似文献   

8.
The required minimum 30-year post-closure care period for municipal solid waste (MSW) landfills can be shortened by reducing or eliminating of MSW components with long-terms effect in gas and leachate. The objectives of this study were to evaluate the relative persistence of landfill gas, leachate quantity, and selected leachate parameters using post-closure monitoring data from a case study landfill in south Florida. The relative persistence of selected decomposition byproducts in leachate were evaluated by both zero order and first order models based on monitoring data from the case study landfill. The analyses show that although gas and leachate production rates diminish very quickly, some contaminants remain in leachate as the decomposition process continues at a slower rate. For the case study landfill, the parameters which have been detected consistently at high concentrations (above MCL) included chloride, TDS, iron, bicarbonate, benzene, and vinyl chloride. Among these, vinyl chloride has the fastest and TDS has the slowest rate of disappearance in the landfill environment. The effect of waste diversion on persistence times of the selected persistent leachate quality parameters was evaluated. For example, a 40% reduction in the amount of plastics deposited in the landfill could reduce the monitoring time for benzene from 59 to 39 years. Zero order model underestimates the persistence times of the contaminants in leachate due to its linear nature. Shortening the monitoring times can provide significant savings for municipalities who need to continue monitoring leachate quality until the MCL levels are reached.  相似文献   

9.
Most of the research on the epigenetic phenomenon of DNA methylation has been performed with vertebrates and plants. Knowledge on DNA methylation in Daphnia magna, a key test organism in aquatic toxicology, is completely lacking. Through epigenetic inheritance, effects of transient chemical exposure could be transferred to non-exposed generations, which could have a major impact on ecological risk assessment procedures. In this study, we determined if CpG methylation occurs in D. magna and if this can be influenced by exposure to toxic substances. Homologs of human DNA methyltransferases DNMT1, DNMT2 and DNMT3A were found in the partially available D. magna genome. Using an optimized “Amplification of Intermethylated Sites (AIMS)” technique, two methylated fragments were discovered in D. magna DNA. No homology was found for these sequences. The methylation and the D. magna origin of the fragments were confirmed with Southern analysis. This optimized AIMS technique was then applied to DNA of D. magna which were exposed to 180 µg/L Cd for two generations. Exposure resulted in a significant decrease in reproduction. The same methylated fragments with the same band intensity were observed in DNA of both non-exposed and exposed daphnids. As such, it could not be demonstrated that Cd exposure altered DNA methylation. However, the presence of DNA methylation in D. magna shows that potentially epigenetic effects may occur in this species.  相似文献   

10.
Leachate samples were collected from the West New Territory Landfill (WENT), Hong Kong, and characterized in the laboratory. The analytical results confirmed that it has a typical nature of aged leachate with a low BOD5/COD ratio of 0.22 and a high strength of ammonia-nitrogen around 5 g/L. A lab-scale study was conducted to investigate the inhibition of microbial activity of the activated sludge. In the first test, glucose-based synthetic wastewater was used in two parallel reactors. The experimental results demonstrated that COD removal declined from 95.1 to 79.1% and the dehydrogenase activity of the sludge decreased from 11.04 to 4.22 μg TF/mg mixed liquor suspended solids (MLSS), when the ammonia-nitrogen concentration increased from 50 mg/L to 800 mg/L progressively. The remaining NH3+-N residue in the treated wastewater increased from 0.58 mg/L to 649 mg/L extensively. In the second test, mixed wastewater samples containing glucose and raw leachate were fed into six parallel biological reactors and operated on batch mode. The experimental results showed COD removal decreased from 97.7 to 78.1% and the dehydrogenase activity decreased from 9.29 to 4.93 μg triphenyl formazon (TF)/mg MLSS, respectively, when the ammonia-nitrogen concentration increased within the same range. Microbial inhibition could also be substantiated by a decrease of specific oxygen uptake rate (SOUR) from 68 to 45 mg O2/g MLSS. These results suggested leachate containing high-strength ammonia-nitrogen should be pretreated to an acceptable NH4+-N level before it is fed into biological reactors.  相似文献   

11.
This study identifies shallow well water contamination sources near the Mae-Hia waste disposal site and the clarification of the extent of well water contamination caused by leachate generated from the disposal site. The water of 40 shallow wells around the Mae-Hia disposal site, where three potential sources of groundwater pollution exist, was sampled and analyzed for physical, chemical, and biological characteristics. Water samples were taken every month from June 1989 to May 1990 along with a measurement of well water levels in order to estimate the groundwater flow direction. Comparison with the drinking water standards/guidelines showed that well water in the study area was not suitable for drinking due to the high contamination of total and fecal coliforms and moderate contamination by nitrate and manganese. It was found that the level of conductivity, total solids, color, chloride, chemical oxygen demand, sodium, copper, and lead in the groundwater of wells located adjacent to the disposal site were higher than in other areas. In addition, higher concentrations of sodium, chloride, calcium, and magnesium in the wells located downstream of the groundwater flow were recorded. Estimation of a leachate plume using chloride as an indicator showed that the wells located in the eastern part of the disposal site, a dominant direction of groundwater flow, were contaminated by leachate generated from the waste disposal site.  相似文献   

12.
Solid waste disposal poses a significant problem, as it leads to land pollution if openly dumped, water pollution if dumped in low lands and air pollution if burnt. Moreover, the scarcity of land and increase in land prices especially in Dhaka, the capital city of Bangladesh create the problems of developing new landfill sites. Realising the existing and future impacts of waste disposal issues, the analytic hierarchy process model was applied to select an appropriate Waste-to-Energy (WTE) conversion technology for household waste of Dhaka-Mirpur Cantonment area. Three alternatives, namely, anaerobic digestion, pyrolysis and plasma gasification (PG) technologies and nine criteria under three aspects (technological, environmental and financial) were chosen for comparison. The analysis revealed that PG is the most appropriate WTE conversion technology in the study area. The selected PG technology has a relatively small footprint; it can treat unsorted waste and can produce good-quality synthetic gas without generating extremely toxic by-products.  相似文献   

13.
The European waste sector is undergoing a period of unprecedented change driven by business consolidation, new legislation and heightened public and government scrutiny. One feature is the transition of the sector towards a process industry with increased pre-treatment of wastes prior to the disposal of residues and the co-location of technologies at single sites, often also for resource recovery and residuals management. Waste technologies such as in-vessel composting, the thermal treatment of clinical waste, the stabilisation of hazardous wastes, biomass gasification, sludge combustion and the use of wastes as fuel, present operators and regulators with new challenges as to their safe and environmentally responsible operation. A second feature of recent change is an increased regulatory emphasis on public and ecosystem health and the need for assessments of risk to and from waste installations. Public confidence in waste management, secured in part through enforcement of the planning and permitting regimes and sound operational performance, is central to establishing the infrastructure of new waste technologies. Well-informed risk management plays a critical role. We discuss recent developments in risk analysis within the sector and the future needs of risk analysis that are required to respond to the new waste and resource management agenda.  相似文献   

14.
The cement industry is one of the most energy-intensive industries consuming 4 GJ/ton of cement, i.e. 12–15% of the energy use in total industry. Energy cost accounts for 30% of the total cost of cement production. Seventy-five per cent of this energy is due to the thermal energy for clinker production. It is also found that 35% of this supplied thermal energy is lost in flue gas streams. Most modern kilns use pet coke or coal as their primary fuel. Instead, the municipal waste in landfills offer a cheap source of energy and reduce the environmental effects of dumping solid waste. The calcination and drying processes and the kiln need large quantities of thermal energy. About 40% of the total energy input is lost in the hot flue gases and cooling the stack plus the kiln shell. Hence, it is suitable to use an organic Rankine cycle (ORC) to recover the exhaust energy from the kiln. Alternatively, a 15 MW gas turbine engine combined with a steam turbine could be utilized. It was found that ORC produces 5 MW with a capital cost recovery period of 1.26 years. However, the gas turbine combined system produces 21.45 MW with a maximum recovery period of 2.66 years.  相似文献   

15.
This research proposes for the introduction of a recycling system in the Gambia to enhance sustainable municipal solid waste management. Poor infrastructures, coupled with inadequate resources and lack of funding, work against the optimization of a MSW disposal service. In the authors’ view, authorities in charge of waste management need to change not only behaviors, but modernize their processes. Recycling technology is a key part of the solution. A model has been developed which suggest the involvement of stakeholders to achieve meaningful sustainable MSWM. This can be achieved by recognizing the role of the informal sector through community-based organizations, Non-Governmental Organizations (NGOs), and the private sector. The open dump approach is leading to severe environmental consequences as the groundwater and soil within the dump is been contaminated. In this study, an integrated municipal solid waste management approach was developed with a model to help achieve sustainable municipal solid waste management. Resource recovery, not waste disposal, must be the ultimate goal with clearly defined end user markets so that the recovery loop is complete. Mandatory sorting of waste at household level would help greatly in making recycling activity successful.  相似文献   

16.
Fine particle (aerodynamic diameter <2.5 microm) samples were collected during six intensive measurement periods from November 2001 to August 2003 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. Chemical composition of these aerosol samples including major ion components, trace elements, organic and elemental carbon (OC and EC), and particulate polycyclic aromatic hydrocarbons (PAHs) were analyzed to study the impact of long-range transport of anthropogenic aerosol. Aerosol chemical composition data were then analyzed using the positive matrix factorization (PMF) technique in order to identify the possible sources and estimate their contribution to particulate matter mass. Fourteen sources were then resolved including soil dust, fresh sea salt, transformed natural source, ammonium sulfate, ammonium nitrate, secondary organic carbon, diesel vehicle, gasoline vehicle, fuel oil combustion, biomass burning, coal combustion, municipal incineration, metallurgical emission source, and volcanic emission. The PMF analysis results of source contributions showed that the natural sources including soil dust, fresh and aged sea salt, and volcanic emission contributed to about 20% of the measured PM(2.5) mass. Other primary anthropogenic sources such as diesel and gasoline vehicle, coal and fuel oil combustion, biomass burning, municipal incineration, metallurgical source contributed about 34% of PM(2.5) mass. Especially, the secondary aerosol mainly involved with sulfate, nitrate, ammonium, and organic carbon contributed to about 39% of the PM(2.5) mass.  相似文献   

17.
污水处理厂的排放污泥是诸多污染物的最终环境归宿之一,其环境影响值得重视。在江苏省全境调查了49家化工园区集中式污水处理厂,对其外排污泥及其浸出液中的5种重金属(砷、镉、铬、汞和铅)含量进行了测定,采用Hakanson潜在生态危害指数法评价了污泥中重金属生态风险。结果表明:49家化工园区污泥浸出液中5种重金属均不超标,但污泥中的砷、铬、汞含量超标,超标率分别为24.5%、6.1%和4.1%,最大超标倍数分别为131、2.12和0.41。污泥中砷含量显著高于我国城市污泥,潜在生态风险程度呈现汞砷铬。从地域分布来看,苏北地区化工园区污泥重金属风险更大。  相似文献   

18.
The characteristics of arsenic-contaminated groundwater and the potential risks from the groundwater were investigated. Arsenic contamination in groundwater was found in four villages (Vinh Tru, Bo De, Hoa Hau, Nhan Dao) in Ha Nam province in northern Vietnam. Since the groundwater had been used as one of the main drinking water sources in these regions, groundwater and hair samples were collected in the villages. The concentrations of arsenic in the three villages (Vinh Tru, Bo De, Hoa Hau) significantly exceeded the Vietnamese drinking water standard for arsenic (10 microg/L) with average concentrations of 348, 211, and 325 microg/L, respectively. According to the results of the arsenic speciation testing, the predominant arsenic species in the groundwater existed as arsenite [As(III)]. Elevated concentrations of iron, manganese, and ammonium were also found in the groundwater. Although more than 90% of the arsenic was removed by sand filtration systems used in this region, arsenic concentrations of most treated groundwater were still higher than the drinking water standard. A significant positive correlation was found between the arsenic concentrations in the treated groundwater and in female human hair. The risk assessment for arsenic through drinking water pathways shows both potential chronic and carcinogenic risks to the local community. More than 40% of the people consuming treated groundwater are at chronic risk for arsenic exposure.  相似文献   

19.
Disposal of sewage sludge from waste water treatment plants is a serious environmental problem of increasing magnitude. Waste water treatment generates as much as 70 g of dry solids per capita per day. Although one of the disposal solutions for this waste is through incineration, still almost 30% of sludge solids remain as ash. This paper presents results related to reuse of sewage sludge ash in concrete. The sludge was characterised for chemical composition (X-ray flourescence analysis), crystalline phases (X-ray diffraction analysis) and pozzolanic activity. The effects of incineration on crystal phases of the dry sludge were investigated. Two water/cement (W/C) ratios (0.55 and 0.45) and three sludge ash percentages (5%, 10% and 20%) per cement mass were used as filler. The mechanical performance of sewage sludge ash concrete (SSAC) at different curing ages (3, 7, 28 and 90 days) was assessed by means of mechanical tests and capillary water absorption. Results show that sewage sludge ash leads to a reduction in density and mechanical strength and to an increase in capillary water absorption. Results also show that SSAC with 20% of sewage sludge ash and W/C = 0.45 has a 28 day compressive strength of almost 30 MPa. SSAC with a sludge ash contents of 5% and 10% has the same capillary water absorption coefficient as the control concrete; as for the concrete mixtures with 20% sludge ash content, the capillary water absorption is higher but in line with C20/25 strength class concretes performance.  相似文献   

20.
In Hong Kong, with the implementation of the Strategic Sewage Disposal Strategy (SSDS), there will be a substantial increase in the generation of sewage sludge. An alternative method using pulverized fuel ash (PFA) generated from a local coal fire power station and lime to stabilize the sludge for potential beneficial uses is studied. The effects of the stabilizing agents on the leaching of heavy metals and pasturing of coliform are studied. The results show that PFA together with a small percentage of lime addition has the potential to reduce heavy metal leaching and reduce the total coliform content of the stabilized sewage sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号