首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

3.
The skill of recognizing and reacting to predators is often based on a learned component. Few studies have examined the role of learning in spiny lobster anti-predator behavior. We investigated whether European spiny lobster (Palinurus elephas) shelter selection is influenced by olfactory stimuli released by one of the most common lobster predators, the common octopus (Octopus vulgaris), and whether the behavioral response to octopus chemical stimuli is innate or influenced by experience. In experimental arenas, we conditioned wild-caught lobsters with three levels of predation threat: no threat, with no predator–prey interaction; medium threat, with odor and visual predator cues only; high threat, active predation risk. We subsequently tested the shelter choice of the conditioned lobster under different experimental conditions: (1) shelter plus seawater; (2) shelter plus seawater plus chemical octopus cue. Our results showed significant differences in mean shelter occupancy with conditioning level. We conclude that P. elephas individuals use chemosensory systems in predator-avoidance mechanisms. Moreover, lobsters subject to a training period of high-level predation threat were able to learn the octopus chemical stimuli and treat its odor as a cue related to predation risk. The findings relative to the spiny lobster learning abilities could be an important tool for future management of lobster populations, e.g., by re-introduction of reared juveniles, which have not yet experienced predation.  相似文献   

4.
Changes in the protein, lipid, glycogen, cholesterol and energy contents, total amino acid and fatty acid profiles of Octopus vulgaris and O. defilippi tissues (gonad, digestive gland and muscle) during sexual maturation (spermatogenesis and oogenesis) were investigated. Both species showed an increase of amino acids and protein content in the gonad throughout sexual maturation (namely in oogenesis), but allocation of these nitrogen compounds from the digestive gland and muscle was not evident. The major essential amino acids in the three tissues were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and alanine. With respect to carbon compounds, a significant increasing trend (P<0.05) in the lipid and fatty acid contents in the three tissues was observed, and, consequently, there was also little evidence of accumulated lipid storage reserves being used for egg production. It seems that for egg production both Octopus species use energy directly from food, rather than from stored products. This direct acquisition model contrasts with the previous model for Octopus vulgaris proposed by ODor and Wells (1978: J Exp Biol 77:15–31). Most of saturated fatty acid content of the three tissues was presented as 16:0 and 18:0, monounsaturated fatty acid content as 18:1 and 20:1 and polyunsaturated fatty acid content as arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). Though cholesterol is an important precursor of steroid hormones, this sterol content exhibited variations that do not seem to be related with the maturation process. Moreover, significant differences (P<0.05) were obtained between genders, suggesting that perhaps there is a greater physiological demand for cholesterol during spermatogenesis than oogenesis. If the component sterols of octopus are of a dietary origin, considerable variation in the cholesterol content between species might be expected on the basis of the sterol composition of their prey. The glycogen reserves increased significantly in the gonad and decreased significantly (P<0.05) in the digestive gland and muscle of O. vulgaris (these trends were not evident in O. defilippi). Glycogen may play an important role in the maturation process and embryogenesis of these organisms, because carbohydrates are precursors of metabolic intermediates in the production of energy. It was evident that sexual maturation had a significant effect upon the gonad energy content, but the non-significant energy variation (P>0.05) in the digestive gland and muscle revealed no evidence that storage reserves are transferred from tissue to tissue. The biochemical composition of digestive gland and muscle may not be influenced by sexual maturation, but rather by other biotic factors, such as feeding activity, food availability, spawning and brooding.Communicated by S.A. Poulet, Roscoff  相似文献   

5.
Adult Acartia congeners, A. bifilosa, A. clausi, A. discaudata and A. tonsa, have distinct seasonal and spatial distribution patterns in Southampton Water (UK), reflecting patterns of temperature and salinity, respectively. The effect of these factors on other life stages, hatch success and naupliar survival was investigated by exposing the congeners to a range of salinity (15.5–33.3) and of temperature (5–20°C). A. clausi is known to prefer more saline waters, and showed highest hatch success at 33.3 salinity. A. tonsa is most tolerant to dilution, and at 15.5 salinity it had the highest hatch success of all the congeners. Hatch success in both A. bifilosa and A. discaudata was similar over the range of salinities investigated, confirming that they are intermediate species in terms of spatial distribution. The nauplii of all species survived well at the higher salinities and best at 33.3, which allows for differential transport of the poorly swimming nauplii to the mouth of the estuary until size and swimming ability increase, after which they can then return to regions of preferred salinity. The summer species, A. clausi and A. tonsa showed higher hatch success at 20°C, whereas A. discaudata, which is present in the water column all year round, showed no significant temperature-related differences in hatch success. A. bifilosa, which diapauses over summer, showed significantly higher hatch success at 10°C than at 20°C. The physiological relationship between temperature and development time was clear; naupliar survival of all species was highest at 20°C and all congeners reached the first copepodite stage (CI) significantly faster at 20°C. However, no consistent pattern was seen for salinity. It would appear that the adult Acartidae in Southampton Water remain in regions of their preferred salinity and lay eggs there which hatch well. However, because the nauplii are not good swimmers, they are swept towards the mouth of the estuary and into areas of higher salinity, where they remain and develop into more advanced stages before moving back up the estuary to take up their adult distribution pattern.Communicated by J.P. Thorpe, Port Erin  相似文献   

6.
Survival and growth of early post-settlement stages are critical for the development of seaweed populations. Fucoid germlings commonly settle in dense monospecific aggregates, where intraspecific competition and environmental variables (e.g. nutrient concentration and temperature) may affect survival and growth. Using factorial experiments, we determined the effects of settlement density (~10, ~50 and ~250 germlings cm–2), nutrient enrichment (from ~10 to ~40 µM N and from ~0.5 to ~2.5 µM P), and temperature (7°C and 17°C) on Fucus serratus and F. evanescens germlings in laboratory cultures over 3 months. Settlement density, nutrient concentration and temperature interactively affected growth of germlings, and the magnitude of this interaction varied between the two species. This represents the first record of such factorial interactions in Fucus spp. germlings. Intraspecific competition, estimated as the relative reduction in germling growth and survival from low to high densities, increased with decreasing nutrient concentration and increasing temperature in both species. While temperature and nutrient concentration had little effect on germling size distributions, size inequality and skewness generally increased with germling density, indicating that a few large individuals gained dominance and suppressed many smaller ones at high density. Self-thinning increased with settlement density and depended on nutrient concentration and species at high density. At high density, self-thinning increased with decreasing nutrient levels in F. evanescens, but not in F. serratus. At low density, nutrient enrichment increased germling growth in F. evanescens, but not in F. serratus, whereas growth in both species was stimulated by nutrient enrichment at higher densities. These results suggest that germling growth and self-thinning are more sensitive to variation in nutrient concentration in F. evanescens than in F. serratus. The potential implications of our findings for the understanding of eutrophication-related abundance changes in both species in southern Norway are discussed.Communicated by L. Hagerman, Helsingør  相似文献   

7.
Multilocus allozyme heterozygosity (MLH) has been positively correlated with growth in some marine bivalves and was suggested to facilitate swimming activity in pectinids. Using two highly mobile scallops, Placopecten magellanicus and Argopecten purpuratus, we examined escape response performance and morphometric characteristics as a function of allelic variability at metabolic loci. Ten allozyme systems were used for A. purpuratus and 7 for P. magellanicus. In each species, the morphometric characteristics and escape response parameters were analyzed separately using principal components analysis (PCA) and the scores of the major principal components were related to allozyme heterozygosity. In both P. magellanicus and A. purpuratus, positive correlations were found between MLH and morphometric parameters, but escape response parameters were only positively linked to MLH in P. magellanicus, and then weakly. The hypothesis that MLH improves fitness of pectinids by increasing the capacity to escape predators is not supported.  相似文献   

8.
Among the diverse patterns of energy allocation to the offspring of gastropods, the presence of egg capsules to protect embryos is common. Females of the edible snail Zidona dufresnei attach egg capsules to hard substrates in shallow Argentine Patagonian waters (40°45′S, 64°56′W) during spring-summer. Embryonic development takes about 30 days at 22°C. In this study, three likely capsule predator species and the marks left by each on egg capsule walls were identified in laboratory experiments in February 2010. Abundances of predators and egg capsules with evidence of predation were assessed in the field in the summers of 2010 and 2011. Under laboratory conditions (N = 10 replicates per treatment and control), the predation rate by the chiton Chaetopleura isabellei was the highest (up to 90%), followed by the gastropod Tegula patagonica and the crab Neohelice granulata (~20% each). Nearly 60% of 41 capsules found in the field showed signs of predation. According to the marks identified in the laboratory, C. isabellei was responsible for 79% of this predation, and T. patagonica for the rest. Predation appears to be important during the encapsulated early life and could be an agent for selecting for resistant capsule walls and a relatively shorter development time.  相似文献   

9.
Previous research on gametic incompatibility in marine invertebrates suggests that for highly dispersive marine invertebrate species, barriers to fertilization among closely related taxa are often incomplete and sometimes asymmetric. The nature of these barriers can dramatically affect the patterns of gene flow and genetic differentiation between species, and thus speciation. Blue mussels, in the genus Mytilus, are genetically distinct in allopatry yet hybrids are present wherever any two species within the group co-occur. The present study sampled M. edulis (L.) and M. trossulus (Gould) in May and June 2001 from the East Bay section of Cobscook Bay, Maine, USA (latitude 44°56′30″N; longitude 67°07′50″W), where the two species are sympatric. Gamete incompatibility was investigated in a series of laboratory fertilizations carried out in July 2001. The proportion of fertilized eggs typically exceeded 80% at sperm concentrations of 103–104 ml?1 among intraspecific matings (n=18), but was <30% even at sperm concentrations in excess of 105–106 ml?1 for interspecific matings (n=13). Further analysis indicated that approximately 100- to 700-fold higher sperm concentrations were required to achieve 20% fertilization in interspecific matings relative to intraspecific matings, indicating strong barriers to interspecific fertilization. The proportion of fertilized eggs did not follow this general pattern in all matings, however. The eggs from two (out of five) M. edulis females were almost as receptive to M. trossulus sperm as they were to M. edulis sperm. In contrast, the eggs from all M. trossulus females (n=3) were unreceptive to M. edulis sperm, suggesting that fertilization barriers between these species may be asymmetric. Given the experimental design employed in this study, the results are also consistent with a strong maternal or egg effect on the level of interspecific gamete compatibility in M. edulis.  相似文献   

10.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

11.
We examined phylogenetic relationships among three Bathymodiolus species in Japanese waters and Bathymodiolus spp. from the Manus Basin by two different approaches. Two-dimensional gel electrophoresis allowed us to compare 263–407 (average=318) proteins, giving comprehensive information on genetic distances among the species. The neighbor-joining tree presented two clusters: (1) B. japonicus and B. platifrons and (2) B. septemdierum and B. sp. Members of the first cluster contain methanotrophic endosymbiotic bacteria and members of the second cluster contain thioautotrophic endosymbionts. DNA sequencing of a fragment (415 bp) of mitochondrial cytochrome c oxidase subunit I (COI) provided a neighbor-joining tree with the same topology as that derived from protein analysis. Inspection of intraspecific variation in COI in B. japonicus and B. platifrons revealed no genetic differentiation between mussel populations of either species from cold-water seeps versus hydrothermal vents, suggesting high adaptability of these Bathymodiolus species to deep-sea chemosynthetic environments. Our results indicated genetic exchanges between mussels from distant localities, suggesting that a limited dispersal capability of the larvae is not the likely factor leading to speciation events in these Bathymodiolus species.Communicated by T. Ikeda, Hakodate  相似文献   

12.
Competitive interactions between germlings of Ascophyllum nodosum (L) Le Jolis and Fucus vesiculosus L. were studied both in the laboratory and on a shore of the Isle of Man, in the Irish Sea. Both intra- and interspecific competition were investigated by comparing the performance of algal germlings both in monocultures and mixed populations of the two species. The growth of germlings of both species reduced with increasing density. F. vesiculosus always grew faster than Ascophyllum and did best in mixed cultures, whereas Ascophyllum did least well when mixed with Fucus germlings. Clearly the adverse effects of F. vesiculosus on A. nodosum were greater than those of Ascophyllum cohorts. At the same total density, the survival and growth of Ascophyllum declined with an increasing proportion of Fucus germlings, implying that poor recruitment of A. nodosum results from strong competition with F. vesiculosus. However, under desiccation stress on the shore, F. vesiculosus enhanced the survival of A. nodosum at the early germling stage even though competition may occur again at the late stage. Thus, whether interactions between germlings take the form of competition or facilitation depends on the environmental conditions.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

13.
Chemical cues released by damaged or dead organisms can affect how and where benthic organisms feed. These cues may cause predators to act as opportunistic scavengers in lieu of their normal predatory role. A scavenger, as defined in this study, is an organism that consumes damaged and/or dead organisms. In-situ experiments were performed to determine how the seastar Pycnopodia helianthoides (Brandt) reacts in the presence of chemical cues from one of its prey species, the butter clam Saxidomus giganteus (Deshayes), using both intact and damaged individuals. The results of these experiments suggest that P. helianthoides use their chemosensory abilities to locate damaged/dead prey. The role of current in propagating chemical cues was paramount in this foraging activity. P. helianthoides chose damaged prey over live prey even when live prey was encountered en route to the damaged individual. This study suggests that chemical cues emitted from damaged or dead individuals may cause significant changes in foraging tactics of key predators, thus altering food-web dynamics.Communicated by J.P. Grassle, New Brunswick  相似文献   

14.
We sought to determine whether common intertidal and shallow subtidal zone grazers would consume extracts or fronds of three invasive Caulerpa spp., all of which are now resident in southern New South Wales, Australia. We examined the responses of herbivorous fishes, echinoderms and molluscs to C. filiformis. A subset of these organisms was tested with extracts of C. scalpelliformis and C. taxifolia. Polar (seawater) extracts of C. filiformis deterred a single herbivore, Aplysia sydneyensis, but confirmed that the biological activity reported from some Caulerpa spp. is not restricted to the lipophilic fractions. The large turbinid Turbo torquatus was deterred by an ethanol extract of C. filiformis, while the small congener T. undulatus demonstrated a significant preference for palatable agar discs containing ethanol extracts of C. filiformis. However, when T. undulatus were offered a choice of fronds from five algal species in the laboratory, they readily consumed Ulva spp. and Sargassum sp., showing the lowest preference for C. filiformis. Solvent extracts of C. scalpelliformis and C. taxifolia did not significantly deter any grazers. However, the overall trend was for reduced consumption of discs containing solvent extracts of these seaweeds. Indeed, for the large urchin Centrostephanus rodgersii and in the fish trials these effects were very near significant (P<0.06). We conclude that common herbivores associated with hard substrata are highly unlikely to intercede in the spread or control of these invasive algae.Communicated by M.S. Johnson, Crawley  相似文献   

15.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
Intertidal endobenthic bivalves are often dislodged from sediments by hydrodynamic forces. As a result, they encounter the dangers of predation and desiccation, which are generally harsh near the sediment surface. To cope with such dangers, the bivalves possibly possess: (1) a strong body to endure predation and desiccation stress, (2) quick mobility to avoid the stresses, or (3) a high growth rate for attaining a size refuge. The present study examined which of these modes are adopted by the subtropical cobbled-shore Venus clams Gafrarium tumidum (Röding, 1798) and Ruditapes variegatus (Sowerby, 1852), revealing the following interspecific differences. (1) G. tumidum survived better than R. variegatus did in harsh experimental conditions, namely: the experimental cages exposed to predation and desiccation on a cobbled shore; a laboratory aquarium with a predatory crab Scylla serrata; and ovens with high temperatures (27°C and 34°C). (2) R. variegatus was more mobile than G. tumidum was, digging into the sediment on a cobbled shore more rapidly at both high and low tides. (3) The two species with shell lengths 20–30 mm showed similar growth rates (median: –0.2 to 44.5 m day–1) in seasonal mark–recapture surveys over 2 years. Overall, to cope with the dangers of predation and desiccation G. tumidum appears to have a strong body, while R. variegatus displays rapid mobility, and neither species seems to attain a size refuge through rapid growth. Such species-specific modes are discussed in relation to the interspecific differences found in shell morphology.Communicated by T. Ikeda, Hakodate  相似文献   

17.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Monthly skeletal extension rates were measured in colonies of Montastraea annularis and M. faveolata growing at Mahahual and Chinchorro Bank, in the Mexican Caribbean. Temperature, light extinction coefficient (kd), sedimentation rate, dissolved nutrients and wave energy were used as indicators of environmental conditions for coral growth. Zooxanthella density and mitotic index, nitrogen, phosphorous and protein in coral tissue, and living tissue thickness were measured during periods of high-density-band (HDB) and low-density-band (LDB) formation. To test their value as indirect measures of competition between zooxanthellae and host, as well as coral health and performance in both species, these biological parameters were also measured, during the HDB-formation period, in corals collected at La Blanquilla. This reef is located in the Gulf of Mexico, in an area of suboptimal environmental conditions for coral growth. M. faveolata had a significantly higher skeletal extension rate than M. annularis. Corals growing in Mahahual had significantly higher skeletal extension rate than those living in Chinchorro Bank. This is consistent with inshore–offshore gradients in growth rates observed by other authors in the same and other coral species. This is probably due to less favorable environmental conditions for coral growth in near shore Mahahual, where there is high hydraulic energy and high sedimentation rate. Contrary to observations of other authors, skeletal extension rate did not differ significantly between HDB- and LDB-formation periods for both species of Montastraea. Both species produced their HDB between July and September, when the seawater temperatures are seasonally higher in the Mexican Caribbean. Tissue thickness indicated that environmental conditions are more favorable for coral health and performance during the HDB-formation period. Mitotic index data support the idea that zooxanthellae have competitive advantages for carbon over the host during the LDB-formation period. So, corals, during the LDB-formation period, with less favorable environmental conditions for coral performance and at a disadvantage for carbon with zooxanthellae, add new skeleton with little or no opportunity for thickening the existing one. This results in an equally extended skeleton with lower density, and the stretching response of skeletal growth, proposed for M. annularis growing under harsher environmental conditions, also occurs during the LDB-formation period.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
In Japan, mass-production of sea urchin juveniles involves the culture of periphytic diatom films on plastic plates in 5- to 15-tonne tanks for the induction of larval metamorphosis. This study focused on the larval response of sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina, to natural microbial films in the sea and diatom-based films formed in the tanks. The effect of diatoms and bacteria on larval metamorphosis was also examined using laboratory-cultured diatom-based films in the presence of germanium dioxide and antibiotics during film culture. Furthermore, the nature of the cue of the cultured diatom-based film was also investigated. Results showed that P. depressus and A. crassispina metamorphosed both on natural microbial films and diatom-based films in a tank. In the sea, the metamorphosis (%) of P. depressus increased gradually in accordance with the immersion period of film formed on glass slides, whereas the larval metamorphosis of A. crassispina had a bell-shaped response curve. In the tank, although the diatom-based films showed a low inducing activity for larval metamorphosis of A. crassispina, the metamorphosis of P. depressus larvae increased linearly in accordance with the diatom density. These results suggest that diatom-based films could promote the larval metamorphosis of P. depressus, but are less important in A. crassispina. In a simultaneous larval assay (May), P. depressus showed a higher percentage of metamorphosis than A. crassispina. We concluded that the former is more sensitive to diatom-based film than the latter and that this is due to differences in their natural habitats. For laboratory-cultured diatom-based film, both species of sea urchins showed a similar response, in which reduction in diatom and bacteria density resulted in a decrease in the original inducing activity. There seems to be a synergistic effect between diatom and bacteria in inducing larval metamorphosis. Films subjected to treatment with 0.1 N HCl were no longer inductive for either sea urchin, while those films treated with 40°C heat or EtOH (5% and 10% EtOH) showed a significant reduction in the inducing activity. Thus the surface-associated cues may be highly susceptible to the above treatments.Communicated by T. Ikeda, Hakodate  相似文献   

20.
Little is known concerning the fine-scale diversity, population structure, and biogeography for Symbiodinium spp. populations inhabiting particular invertebrate species, including the gorgonian corals, which are prevalent members of reef communities in the Gulf of Mexico, the Caribbean, and the western Atlantic. This study examined the Symbiodinium sp. clade B symbionts hosted by the Caribbean gorgonian Pseudopterogorgia elisabethae (Bayer). A total of 575 colonies of P. elisabethae were sampled in 1995 and 1998–2000 from 12 populations lying along an ~450 km transect in the Bahamas and their Symbiodinium sp. clade B symbionts genotyped at two polymorphic dinucleotide microsatellite loci. Twenty-three unique, two-locus genotypes were identified in association with these P. elisabethae colonies. Most colonies hosted only a single Symbiodinium sp. clade B genotype; however, in some instances ( n=25), two genotypes were harbored simultaneously. For 10 of the 12 populations, 66–100% of the P. elisabethae colonies hosted the same symbiont genotype. Added to this, in 9 of the 12 populations, a Symbiodinium sp. clade B genotype was either unique to a population or found infrequently in other populations. This distribution of Symbiodinium sp. clade B genotypes resulted in statistically significant ( P<0.05 or <0.001) differentiation in 62 of 66 pairwise comparisons of P. elisabethae populations. Tests of linkage disequilibrium suggested that a combination of clonal propagation of the haploid phase and recombination is responsible for maintaining these distinct Symbiodinium sp. clade B populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号